iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://www.ncbi.nlm.nih.gov/pubmed/32488759
Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;23(5):543-551.
doi: 10.1007/s11102-020-01056-w.

Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery

Affiliations

Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery

Stefanos Voglis et al. Pituitary. 2020 Oct.

Abstract

Purpose: Hyponatremia after pituitary surgery is a frequent finding with potential severe complications and the most common cause for readmission. Several studies have found parameters associated with postoperative hyponatremia, but no reliable specific predictor was described yet. This pilot study evaluates the feasibility of machine learning (ML) algorithms to predict postoperative hyponatremia after resection of pituitary lesions.

Methods: Retrospective screening of a prospective registry of patients who underwent transsphenoidal surgery for pituitary lesions. Hyponatremia within 30 days after surgery was the primary outcome. Several pre- and intraoperative clinical, procedural and laboratory features were selected to train different ML algorithms. Trained models were compared using common performance metrics. Final model was internally validated on the testing dataset.

Results: From 207 patients included in the study, 44 (22%) showed a hyponatremia within 30 days postoperatively. Hyponatremic measurements peaked directly postoperatively (day 0-1) and around day 7. Bootstrapped performance metrics of different trained ML-models showed largest area under the receiver operating characteristic curve (AUROC) for the boosted generalized linear model (67.1%), followed by the Naïve Bayes classifier (64.6%). The discriminative capability of the final model was assessed by predicting on unseen dataset. Large AUROC (84.3%; 67.0-96.4), sensitivity (81.8%) and specificity (77.5%) with an overall accuracy of 78.4% (66.7-88.2) was reached.

Conclusion: Our trained ML-model was able to learn the complex risk factor interactions and showed a high discriminative capability on unseen patient data. In conclusion, ML-methods can predict postoperative hyponatremia and thus potentially reduce morbidity and improve patient safety.

Keywords: Adenoma; Artificial intelligence; Hyponatremia; Machine learning; Pituitary surgery; Sodium.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources