iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://www.ncbi.nlm.nih.gov/pubmed/16458936?dopt=Abstract
Tocotrienols: Vitamin E beyond tocopherols - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar 27;78(18):2088-98.
doi: 10.1016/j.lfs.2005.12.001. Epub 2006 Feb 3.

Tocotrienols: Vitamin E beyond tocopherols

Affiliations
Review

Tocotrienols: Vitamin E beyond tocopherols

Chandan K Sen et al. Life Sci. .

Abstract

In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Yet, of all papers on vitamin E listed in PubMed less than 1% relate to tocotrienols. The abundance of alpha-tocopherol in the human body and the comparable efficiency of all vitamin E molecules as antioxidants, led biologists to neglect the non-tocopherol vitamin E molecules as topics for basic and clinical research. Recent developments warrant a serious reconsideration of this conventional wisdom. Tocotrienols possess powerful neuroprotective, anti-cancer and cholesterol lowering properties that are often not exhibited by tocopherols. Current developments in vitamin E research clearly indicate that members of the vitamin E family are not redundant with respect to their biological functions. alpha-Tocotrienol, gamma-tocopherol, and delta-tocotrienol have emerged as vitamin E molecules with functions in health and disease that are clearly distinct from that of alpha-tocopherol. At nanomolar concentration, alpha-tocotrienol, not alpha-tocopherol, prevents neurodegeneration. On a concentration basis, this finding represents the most potent of all biological functions exhibited by any natural vitamin E molecule. An expanding body of evidence support that members of the vitamin E family are functionally unique. In recognition of this fact, title claims in manuscripts should be limited to the specific form of vitamin E studied. For example, evidence for toxicity of a specific form of tocopherol in excess may not be used to conclude that high-dosage "vitamin E" supplementation may increase all-cause mortality. Such conclusion incorrectly implies that tocotrienols are toxic as well under conditions where tocotrienols were not even considered. The current state of knowledge warrants strategic investment into the lesser known forms of vitamin E. This will enable prudent selection of the appropriate vitamin E molecule for studies addressing a specific need.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Vitamin E: variations and nomenclature
A, R1 = R2 = R3 = Me, known as α-tocopherol, is designated α-tocopherol or 5,7,8-trimethyltocol; R1 = R3 = Me; R2 = H, known as, β-tocopherol, is designated, β-tocopherol or 5,8-dimethyltocol; R1 = H; R2 = R3 = Me, known as γ-tocopherol, is designated γ-tocopherol or 7,8-dimethyltocol; R1 = R2 = H; R3 = Me, known as δ-tocopherol, is designated δ-tocopherol or 8-methyltocol. B, R1 = R2 = R3 = H, 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)chroman-6-ol, is designated tocotrienol; R1 = R2 = R3 = Me, formerly known as ζ1 or ζ2-tocopherol, is designated 5,7,8-trimethyltocotrienol or α-tocotrienol. The name tocochromanol-3 has also been used; R1 = R3 = Me; R2 = H, formerly known as ɛ-tocopherol, is designated 5,8-dimethyltocotrienol or β-tocotrienol; R1 = H; R2 = R3 = Me, formerly known as γ-tocopherol, is designated 7,8-dimethyltocotrienol or γ-tocotrienol. The name plastochromanol-3 has also been used; R1 = R2 = H; R3 = Me is designated 8-methyltocotrienol or δ-tocotrienol (Liebecq, 1992).

Similar articles

Cited by

References

    1. Adachi H, Ishii N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. Journals of Gerontology Series A, Biological Sciences & Medical Sciences. 2000;55 (6):B280–285. - PubMed
    1. Agarwal MK, Agarwal ML, Athar M, Gupta S. Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association. Cell Cycle. 2004;3 (2):205–211. - PubMed
    1. Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Palmgren J, Freedman LS, Haapakoski J, Barrett MJ, Pietinen P, Malila N, Tala E, Liippo K, Salomaa ER, Tangrea JA, Teppo L, Askin FB, Taskinen E, Erozan Y, Greenwald P, Huttunen JK. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst. 1996;88 (21):1560–1570. - PubMed
    1. Anderson SL, Qiu J, Rubin BY. Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochemical & Biophysical Research Communications. 2003;306 (1):303–309. - PubMed
    1. Bascetta E, Gunstone FD, Walton JC. Electron spin resonance study of the role of vitamin E and vitamin C in the inhibition of fatty acid oxidation in a model membrane. Chem Phys Lipids. 1983;33 (2):207–210. - PubMed

Publication types