iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://www.ncbi.nlm.nih.gov/pubmed/11997377?dopt=Abstract
Regulation and function of ascorbate peroxidase isoenzymes - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May;53(372):1305-19.

Regulation and function of ascorbate peroxidase isoenzymes

Affiliations
  • PMID: 11997377
Review

Regulation and function of ascorbate peroxidase isoenzymes

Shigeru Shigeoka et al. J Exp Bot. 2002 May.

Abstract

Even under optimal conditions, many metabolic processes, including the chloroplastic, mitochondrial, and plasma membrane-linked electron transport systems of higher plants, produce active oxygen species (AOS). Furthermore, the imposition of biotic and abiotic stress conditions can give rise to excess concentrations of AOS, resulting in oxidative damage at the cellular level. Therefore, antioxidants and antioxidant enzymes function to interrupt the cascades of uncontrolled oxidation in each organelle. Ascorbate peroxidase (APX) exists as isoenzymes and plays an important role in the metabolism of H(2)O(2) in higher plants. APX is also found in eukaryotic algae. The characterization of APX isoenzymes and the sequence analysis of their clones have led to a number of investigations that have yielded interesting and novel information on these enzymes. Interestingly, APX isoenzymes of chloroplasts in higher plants are encoded by only one gene, and their mRNAs are generated by alternative splicing of the gene's two 3'-terminal exons. Manipulation of the expression of the enzymes involved in the AOS-scavenging systems by gene-transfer technology has provided a powerful tool for increasing the present understanding of the potential of the defence network against oxidative damage caused by environmental stresses. Transgenic plants expressing E. coli catalase to chloroplasts with increased tolerance to oxidative stress indicate that AOS-scavenging enzymes, especially chloroplastic APX isoenzymes are sensitive under oxidative stress conditions. It is clear that a high level of endogenous ascorbate is essential effectively to maintain the antioxidant system that protects plants from oxidative damage due to biotic and abiotic stresses.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources