Abstract
Purification of DNA polymerase from E. coli B has in two cases each time led to the isolation of two separate polymerase activities, enzyme A and enzyme B. Enzyme A was in contrast to enzyme B almost completely devoid of exonuclease activity. Each of the two enzymes yielded a single symmetrical activity peak in gel filtration chromatograms. From the elution volumes the molecular weights were estimated to be about 70,000 for enzyme A and about 150,000 for enzyme B.
Treatment of enzyme B with subtilisin led to an increase of about 30 per cent of the polymerase activity while the exonuclease activity almost completely disappeared. The product of the subtilisin treatment (enzyme C) gave rise to a single symmetrical polymerase activity peak in a gel filtration chromatogram. The elution volume was identical to that obtained with enzyme A. It is concluded that enzyme A and enzyme C are formed by limited proteolysis of enzyme B.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
- Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
- Brutlag D., Atkinson M. R., Setlow P., Kornberg A. An active fragment of DNA polymerase produced by proteolytic cleavage. Biochem Biophys Res Commun. 1969 Dec 4;37(6):982–989. doi: 10.1016/0006-291x(69)90228-9. [DOI] [PubMed] [Google Scholar]
- Castellino F. J., Barker R. Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry. Biochemistry. 1968 Jun;7(6):2207–2217. doi: 10.1021/bi00846a025. [DOI] [PubMed] [Google Scholar]
- Cavalieri L. F., Carroll E. DNA polymerase: evidence for multiple molecular species. Proc Natl Acad Sci U S A. 1968 Mar;59(3):951–958. doi: 10.1073/pnas.59.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 28. The pyrophosphate exchange and pyrophosphorolysis reactions of deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3019–3028. [PubMed] [Google Scholar]
- ELIAS H. G., GARBE A., LAMPRECHT W. [The determination of the molecular weight of D-glyceraldehyde-3-phosphate dehydrogenase. On molecular weight determination in multi-component systems and under the influence of activators]. Hoppe Seylers Z Physiol Chem. 1960;319:22–34. doi: 10.1515/bchm2.1960.319.1.22. [DOI] [PubMed] [Google Scholar]
- Englund P. T., Huberman J. A., Jovin T. M., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXX. Binding of triphosphates to deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3038–3044. [PubMed] [Google Scholar]
- Englund P. T., Kelly R. B., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXI. Binding of deoxyribonucleic acid to deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3045–3052. [PubMed] [Google Scholar]
- Goulian M., Lucas Z. J., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J Biol Chem. 1968 Feb 10;243(3):627–638. [PubMed] [Google Scholar]
- HIRS C. H., MOORE S., STEIN W. H. Peptides obtained by tryptic hydrolysis of performic acid-oxidized ribonuclease. J Biol Chem. 1956 Apr;219(2):623–642. [PubMed] [Google Scholar]
- Johansen J. T., Ottesen M., Svendsen I., Wybrandt G. The degradation of the B-chain of oxidized insulin by two subtilisins and their succinylated and N-carbamylated derivatives. C R Trav Lab Carlsberg. 1968;36(20):365–384. [PubMed] [Google Scholar]
- Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
- Jovin T. M., Englund P. T., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXVII. Chemical modifications of deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3009–3018. [PubMed] [Google Scholar]
- Kornberg A. Active center of DNA polymerase. Science. 1969 Mar 28;163(3874):1410–1418. doi: 10.1126/science.163.3874.1410. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lezius A. G., Hennig S. B., Menzel C., Metz E. Two species of DNA polymerase isolated from Escherichia coli. Eur J Biochem. 1967 Jul;2(1):90–97. doi: 10.1111/j.1432-1033.1967.tb00111.x. [DOI] [PubMed] [Google Scholar]
- Markland F. S., Smith E. L. Subtilisin BPN. VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J Biol Chem. 1967 Nov 25;242(22):5198–5211. [PubMed] [Google Scholar]
- OKAZAKI T., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XV. PURIFICATION AND PROPERTIES OF A POLYMERASE FROM BACILLUS SUBTILIS. J Biol Chem. 1964 Jan;239:259–268. [PubMed] [Google Scholar]
- Steuart C. D., Anand S. R., Bessman M. J. Studies on the synthesis of deoxyribonucleic acid. I. Further purification and properties of the deoxyribonucleic acid polymerase induced by infection of Escherichia coli with bacteriophage T5. J Biol Chem. 1968 Oct 25;243(20):5308–5318. [PubMed] [Google Scholar]