Abstract
The marine toad, Bufo marinus, has a broad natural distribution extending from the south-west of the USA to southern Peru and the central Amazon. It was introduced to several localities in the Caribbean and Pacific Oceans to control sugar cane pests. We sequenced 468 bp of mitochondrial DNA (mtDNA) containing the ND3 gene, and flanking tRNA genes from toads spanning the broad natural and introduced ranges. Consistent with the known history of introductions and expected effects of serial bottlenecks, mtDNA within introduced populations in Hawaii and Australia was uniform and most closely related to samples from eastern Venezuela and French Guiana. However, mtDNA nucleotide diversity in the geographic region spanning the source areas is also relative low (0.18-0.46%) and the absence of variation in the introduced populations precludes quantitative assessment of the reduction in genetic diversity. Unexpectedly, there was a large phylogeographic break (5.4% sequence divergence) within the natural range separating populations east and west of the Venezuelan Andes. We hypothesize that the two major lineages of B. marinus were isolated by the uplift of the eastern Andean cordillera which was completed approximately 2.7 Ma. Another species of the marinus group, B. paracnemis, had mtDNA paraphyletic, with marinus, being nested within the eastern lineage. Thus, at least one speciation event within the marinus group postdates the split within marinus. These findings suggest that the taxonomy of B. marinus should be re-evaluated and that the search for pathogens to control Australian populations should be conducted in populations from both lineages in the natural range.
Full Text
The Full Text of this article is available as a PDF (306.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi J., Cao Y., Hasegawa M. Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates. J Mol Evol. 1993 Mar;36(3):270–281. doi: 10.1007/BF00160483. [DOI] [PubMed] [Google Scholar]
- Brower A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491–6495. doi: 10.1073/pnas.91.14.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easteal S. The ecological genetics of introduced populations of the giant toad Bufo marinus. II. Effective population size. Genetics. 1985 May;110(1):107–122. doi: 10.1093/genetics/110.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graybeal A. The phylogenetic utility of cytochrome b: lessons from bufonid frogs. Mol Phylogenet Evol. 1993 Sep;2(3):256–269. doi: 10.1006/mpev.1993.1024. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Lynch M., Crease T. J. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990 Jul;7(4):377–394. doi: 10.1093/oxfordjournals.molbev.a040607. [DOI] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- McElroy D., Moran P., Bermingham E., Kornfield I. REAP: an integrated environment for the manipulation and phylogenic analysis of restriction data. J Hered. 1992 Mar-Apr;83(2):157–158. doi: 10.1093/oxfordjournals.jhered.a111180. [DOI] [PubMed] [Google Scholar]
- Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W., Brown W. M., Stoneking M., Aquadro C. F. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996 Mar;142(3):953–963. doi: 10.1093/genetics/142.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol. 1996 Sep;13(7):933–942. doi: 10.1093/oxfordjournals.molbev.a025661. [DOI] [PubMed] [Google Scholar]