iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://www.nature.com/articles/s41596-024-01071-2
ChromEMT: visualizing and reconstructing chromatin ultrastructure and 3D organization in situ | Nature Protocols
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

ChromEMT: visualizing and reconstructing chromatin ultrastructure and 3D organization in situ

Abstract

Structure determines function. The discovery of the DNA double-helix structure revealed how genetic information is stored and copied. In the mammalian cell nucleus, up to two meters of DNA is compacted by histones to form nucleosome/DNA particle chains that form euchromatin and heterochromatin domains, chromosome territories and mitotic chromosomes upon cell division. A critical question is what are the structures, interactions and 3D organization of DNA as chromatin in the nucleus and how do they determine DNA replication timing, gene expression and ultimately cell fate. To visualize genomic DNA across these different length scales in the nucleus, we developed ChromEMT, a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, which enables nucleosome chains, chromatin domains, chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography (EMT). ChromEMT exploits a membrane-permeable, fluorescent DNA-binding dye, DRAQ5, which upon excitation drives the photo-oxidation and precipitation of diaminobenzidine polymers on the surface of DNA/nucleosome particles that are visible in the electron microscope when stained with osmium. Here, we describe a detailed protocol for ChromEMT, including DRAQ5 staining, photo-oxidation, sample preparation and multi-tilt EMT that can be applied broadly to reconstruct genomic DNA structure and 3D interactions in cells and tissues and different kingdoms of life. The entire procedure takes ~9 days and requires expertise in electron microscopy sample sectioning and acquisition of multi-tilt EMT data sets.

Key points

  • ChromEMT is a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, enabling chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography.

  • This approach enables chromatin to be stained specifically and its ultrastructure to be reconstructed and visualized across a different set of length scales in the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The sequence of DNA, assembly with histones into nucleosome particles, interactions between nucleosome polymers in 3D topological domains, with the nuclear architecture and chromosome territories span multiple length scales, and together determine genome accessibility and function.
Fig. 2: Overview of the ChromEMT method to visualize and reconstruct chromatin ultrastructure in interphase and mitotic cells.
Fig. 3: Photo-oxidation station setup examples.
Fig. 4: Time series and transmitted light images of DRAQ5 photo-oxidation and DAB precipitation.
Fig. 5: Correlated light and TEM images of ChromEM-stained chromosomes in mitosis.
Fig. 6: Cellular and nuclear ultrastructure is well preserved in ChromEM sample preparation.
Fig. 7: Multi-tilt EMT data-acquisition scheme.
Fig. 8: ChromEMT enables the ultrastructure of DNA/nucleosome particles and chromatin chains to be visualized and resolved in the nucleus at nucleosome resolutions and megabase scales.
Fig. 9: ChromEMT enables chromatin chains, interactions, 3D organization and domains to be visualized, resolved and reconstructed in the context of the nuclear architecture.

Data availability

The EM tomograms are deposited in the Cell Image Library at http://www.cellimagelibrary.org/groups/49801.

References

  1. Olins, D. E. & Olins, A. L. Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 4, 809–814 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Cremer, T., Küpper, K., Dietzel, S. & Fakan, S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell 96, 555–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Dehghani, H., Dellaire, G. & Bazett-Jones, D. P. Organization of chromatin in the interphase mammalian cell. Micron 36, 95–108 (2005).

    Article  PubMed  Google Scholar 

  9. Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda, A. et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones. PloS One 5, e12768 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zessin, P. J. M., Finan, K. & Heilemann, M. Super-resolution fluorescence imaging of chromosomal DNA. J. Struct. Biol. 177, 344–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hanaichi, T. et al. A stable lead by modification of Sato’s method. J. Electron Microsc. (Tokyo) 35, 304–306 (1986).

    CAS  PubMed  Google Scholar 

  19. Olins, A. L., Senior, M. B. & Olins, D. E. Ultrastructural features of chromatin nu bodies. J. Cell Biol. 68, 787–793 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Sedat, J. & Manuelidis, L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb. Symp. Quant. Biol. 42 Pt 1, 331–350 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. McDowall, A. W., Smith, J. M. & Dubochet, J. Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 5, 1395–1402 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belmont, A. S. & Bruce, K. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 127, 287–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Belmont, A. S., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98, 129–143 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Boopathi, R., Dimitrov, S., Hamiche, A., Petosa, C. & Bednar, J. Cryo-electron microscopy of the chromatin fiber. Curr. Opin. Struct. Biol. 64, 97–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Li, Y., Zhang, H., Li, X., Wu, W. & Zhu, P. Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture. Cell Rep. 42, 113134 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Hou, Z., Nightingale, F., Zhu, Y., MacGregor-Chatwin, C. & Zhang, P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat. Commun. 14, 6324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, M. et al. Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography. Nat. Commun. 15, 4395 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dahlberg, P. D. & Moerner, W. E. Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale. Annu. Rev. Phys. Chem. 72, 1–26 (2021).

    Article  Google Scholar 

  32. Stoeckenius, W. Electron microscopy of DNA molecules “stained” with heavy metal salts. J. Biophys. Biochem. Cytol. 11, 297–310 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cogliati, R. & Gautier, A. Demonstration of DNA and polysaccharides using a new “Schiff type” reagent. C. R. Acad. Hebd. Seances Acad. Sci. D. 276, 3041–3044 (1973). [in French].

    CAS  PubMed  Google Scholar 

  34. Olins, A. L., Moyer, B. A., Kim, S. H. & Allison, D. P. Synthesis of a more stable osmium ammine electron-dense DNA stain. J. Histochem. Cytochem. 37, 395–398 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Graham, R. C. & Karnovsky, M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302 (1965).

    Article  Google Scholar 

  36. Deerinck, T. J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Maranto, A. R. Neuronal mapping: a photooxidation reaction makes lucifer yellow useful for electron microscopy. Science 217, 953–955 (1982).

    Article  CAS  PubMed  Google Scholar 

  38. Ou, H. D. et al. A structural basis for the assembly and functions of a viral polymer that inactivates multiple tumor suppressors. Cell 151, 304–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PloS Biol. 9, e1001041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ngo, J. T. et al. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat. Chem. Biol. 12, 459–465 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garton, H. J. L. & Schoenwolf, G. C. Improving the efficacy of fluorescent labeling for histological tracking of cells in early mammalian and avian embryos. Anat. Rec. 244, 112–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Balercia, G., Chen, S. & Bentivoglio, M. Electron microscopic analysis of fluorescent neuronal labeling after photoconversion. J. Neurosci. Meth. 45, 87–98 (1992).

    Article  CAS  Google Scholar 

  46. Smith, P. J., Wiltshire, M. & Errington, R. J. DRAQ5 labeling of nuclear DNA in live and fixed cells. Curr. Protoc. Cytom. 28, 7.25.1–7.25.11 (2004).

    Google Scholar 

  47. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ou, H. D., Deerinck, T. J., Bushong, E., Ellisman, M. H. & O’Shea, C. C. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 90, 39–48 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Njoh, K. L. et al. Spectral analysis of the DNA targeting bisalkylaminoanthraquinone DRAQ5 in intact living cells. Cytom. A 69, 805–814 (2006).

    Article  Google Scholar 

  50. Martin, R. M., Leonhardt, H. & Cardoso, M. C. DNA labeling in living cells. Cytom. A 67, 45–52 (2005).

    Article  Google Scholar 

  51. Al-Otaibi, J. S. & Gogary, T. M. E. Synthesis of novel anthraquinones: molecular structure, molecular chemical reactivity descriptors and interactions with DNA as antibiotic and anti-cancer drugs. J. Mol. Struct. 1130, 799–809 (2017).

    Article  CAS  Google Scholar 

  52. Penczek, P. A. Fundamentals of three-dimensional reconstruction from projections. Methods Enzymol. 482, 1–33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Frank, J. Introduction: principles of electron tomography. In Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (ed., Frank, J.) 1–15 (Springer, New York, New York, USA, 2006).

  54. Mastronarde, D. N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Phan, S. et al. 3D reconstruction of biological structures: automated procedures for alignment and reconstruction of multiple tilt series in electron tomography. Adv. Struct. Chem. Imaging 2, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Penczek, P. A. & Frank, J. Resolution in electron tomography. In Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (ed. Frank, J.) 307–330 (Springer, 2006).

  57. Derenzini, M., Olins, A. L. & Olins, D. E. Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur. J. Histochem. 58, 2307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eltsov, M., MacLellan, K. M., Maeshima, K., Frangakis, A. S. & Dubochet, J. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl Acad. Sci. USA 105, 19732–19737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahmed, K. et al. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5, e10531 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fussner, E. et al. Open and closed domains in the mouse genome are configured as 10‐nm chromatin fibres. EMBO Rep. 13, 992–996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, C. et al. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol. Biol. Cell 27, 3357–3368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cai, S., Böck, D., Pilhofer, M. & Gan, L. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Mol. Biol. Cell 29, 2450–2457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arimura, Y., Shih, R. M., Froom, R. & Funabiki, H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol. Cell 81, 4377–4397.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turk, M. & Baumeister, W. The promise and the challenges of cryo‐electron tomography. FEBS Lett. 594, 3243–3261 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Sosinsky, G. E. et al. The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. J. Struct. Biol. 161, 359–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Richard, E. et al. Short exposure to the DNA intercalator DRAQ5 dislocates the transcription machinery and induces cell death. Photochem. Photobiol. 87, 256–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Wojcik, K. & Dobrucki, J. W. Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells—influence on chromatin organization and histone–DNA interactions. Cytom. A 73, 555–562 (2008).

    Article  Google Scholar 

  69. Luther, P. K. Sample shrinkage and radiation damage of plastic sections. In Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (ed. Frank, J.) 17–48 (Springer, 2006).

  70. Zhai, X. et al. LoTToR: an algorithm for missing-wedge correction of the low-tilt tomographic 3D reconstruction of a single-molecule structure. Sci. Rep. 10, 10489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Y.-T. et al. Isotropic reconstruction for electron tomography with deep learning. Nat. Commun. 13, 6482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phan, S. et al. TxBR montage reconstruction for large field electron tomography. J. Struct. Biol. 180, 154–164 (2012).

    Article  PubMed  Google Scholar 

  73. Li, Y. et al. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. Sci. Adv. 7, eabe4310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eldred, W. D., Zucker, C., Karten, H. J. & Yazulla, S. Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J. Histochem. Cytochem. 31, 285–292 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Adams, S. R. et al. Multicolor electron microscopy for simultaneous visualization of multiple molecular species. Cell Chem. Biol. 23, 1417–1427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Stalling, D., Westerhoff, M. & Hege, H.-C. Amira: a highly interactive system for visual data analysis. In The Visualization Handbook (eds. Hansen, C. D. & Johnson, C. R.) 749–767 (Elsevier Butterworth-Heinemann, 2005).

  79. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV (ed., Paul, S. H.) 474–485 (Academic Press Professional, Inc., 1994).

  80. Li, C. H. & Tam, P. K. S. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett. 19, 771–776 (1998).

    Article  Google Scholar 

  81. Karnovsky, M. J. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy [abstract]. In 11th Meeting of American Society for Cell Biology p146 (1971).

  82. Bozzola, J. J. & Russell, L. D. Electron Microscopy 3rd edn, Vol. 8 (Jones & Bartlett Learning, 1998).

  83. Sabatini, D. D., Bensch, K. & Barrnett, R. J. Cytochemistry and electron microscopy. J. Cell Biol. 17, 19–58 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was supported by grants from the W. M. Keck Foundation and NIH 5U01EB021247 to C.C.O. and M.H.E. C.C.O. was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute. Salk core services were supported by P30CA014195 from NCI. All EM studies were carried out at the NCMIR, an NIGMS-supported Research Resource supported by NIH under GM103412 and an NIDA Award U01DA047731 to M.H.E.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The detailed methods are based and extend upon the contributions of the authors listed in the initial publication of the ChromEMT method and its application in the visualization and 3D reconstruction of chromatin in interphase nuclei and mitotic chromosomes47. C.C.O. and M.H.E. jointly supervised this work. H.D.O. performed sample preparation and photo-oxidation. T.J.D. performed sample sectioning. S.P. performed EM tomogram acquisition and reconstruction. The initial draft of this manuscript was written by H.D.O., T.J.D. and S.P. with editing from C.C.O. and M.H.E. A.I. contributed to the writing and editing of the text and figures, and C.C.O. contributed to finalizing the manuscript for publication.

Corresponding authors

Correspondence to Mark H. Ellisman or Clodagh C. O’Shea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Vadim Backman, Gang Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ou, H. D. et al. Science 357, eaag0025 (2017): https://doi.org/10.1126/science.aag0025

Ou, H. D. et al. Methods 90, 39–48 (2015): https://doi.org/10.1016/j.ymeth.2015.06.002

Phan, S. et al. Adv. Struct. Chem. Imaging 2, 8 (2016): https://doi.org/10.1186/s40679-016-0021-2

Ngo, J. T. et al. Nat. Chem. Biol. 12, 459–465 (2016): https://doi.org/10.1038/nchembio.2076

Ou, H. D. et al. Cell 151, 304–319 (2012): https://doi.org/10.1016/j.cell.2012.08.035

Supplementary information

Supplementary Information

Supplementary Information 1

Supplementary Video 1

Quiescent SAECs were fixed and labeled with ChromEM, and 250-nm sections were cut and imaged by eight-tilt EMT. The reconstructed EMT volume is 1,968 nm (X) by 1,877 nm (Y) by 169 nm (Z), with a voxel value of 1 nm by 1 nm by 1 nm. There are one hundred sixty-nine 1-nm-thick serial computational TSs numbered #0–#168. To visualize chromatin as a continuum from the top to the bottom of the nuclear volume, sequential TSs can be reconstructed and visualized as a continuum (TS 10–110). 3D reconstruction and surface rendering of chromatin (magenta) and the nuclear membrane (green) are shown in the second half of the movie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, H.D., Phan, S., Deerinck, T.J. et al. ChromEMT: visualizing and reconstructing chromatin ultrastructure and 3D organization in situ. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01071-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing