Abstract
Mental imagery can be advantageous, unnecessary and even clinically disruptive. With methodological constraints now overcome, research has shown that visual imagery involves a network of brain areas from the frontal cortex to sensory areas, overlapping with the default mode network, and can function much like a weak version of afferent perception. Imagery vividness and strength range from completely absent (aphantasia) to photo-like (hyperphantasia). Both the anatomy and function of the primary visual cortex are related to visual imagery. The use of imagery as a tool has been linked to many compound cognitive processes and imagery plays both symptomatic and mechanistic roles in neurological and mental disorders and treatments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zeman, A., Dewar, M. & Della Sala, S. Lives without imagery — congenital aphantasia. Cortex 73, 378–380 (2015). This article documents and coins the term aphantasia, described as the complete lack of visual imagery ability.
Pearson, J. & Westbrook, F. Phantom perception: voluntary and involuntary non-retinal vision. Trends Cogn. Sci. 19, 278–284 (2015). This opinion paper proposes a unifying framework for both voluntary and involuntary imagery.
Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19, 590–602 (2015).
Egeth, H. E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).
Dijkstra, N., Zeidman, P., Ondobaka, S., Gerven, M. A. J. & Friston, K. Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci. Rep. 7, 5677 (2017).
Dentico, D. et al. Reversal of cortical information flow during visual imagery as compared to visual perception. Neuroimage 100, 237–243 (2014).
Schlegel, A. et al. Network structure and dynamics of the mental workspace. Proc. Natl Acad. Sci. USA 110, 16277–16282 (2013).
Ranganath, C. & D’Esposito, M. Directing the mind’s eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Curr. Opin. Neurobiol. 15, 175–182 (2005).
Yomogida, Y. Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cereb. Cortex 14, 1376–1383 (2004).
Ishai, A., Ungerleider, L. G. & Haxby, J. V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).
Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H. & Singer, W. The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur. J. Neurosci. 10, 1563–1573 (1998).
Mellet, E. et al. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 16, 6504–6512 (1996).
O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus- specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).
Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–642 (2001).
Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).
Bird, C. M., Capponi, C., King, J. A., Doeller, C. F. & Burgess, N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 30, 11688–11695 (2010).
Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).
Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).
Maguire, E. A., Vargha-Khadem, F. & Hassabis, D. Imagining fictitious and future experiences: evidence from developmental amnesia. Neuropsychologia 48, 3187–3192 (2010).
Kim, S. et al. Sparing of spatial mental imagery in patients with hippocampal lesions. Learn. Mem. 20, 657–663 (2013).
Pearson, J. & Kosslyn, S. M. The heterogeneity of mental representation: ending the imagery debate. Proc. Natl Acad. Sci. USA 112, 10089–10092 (2015). This paper proposes an end to the ‘imagery debate’ based on the discussed evidence that imagery can be represented in the brain in a depictive manner.
D’Esposito, M. et al. A functional MRI study of mental image generation. Neuropsychologia 35, 725–730 (1997).
Knauff, M., Kassubek, J., Mulack, T. & Greenlee, M. W. Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport 11, 3957–3962 (2000).
Trojano, L. et al. Matching two imagined clocks: the functional anatomy of spatial analysis in the absence of visual stimulation. Cereb. Cortex 10, 473–481 (2000).
Wheeler, M. E., Petersen, S. E. & Buckner, R. L. Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc. Natl Acad. Sci. USA 97, 11125 (2000).
Formisano, E. et al. Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35, 185–194 (2002).
Sack, A. T. et al. Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35, 195–204 (2002).
Le Bihan, D. et al. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl Acad. Sci. USA 90, 11802–11805 (1993).
Sabbah, P. et al. Functional magnetic resonance imaging at 1.5T during sensorimotor and cognitive task. Eur. Neurol. 35, 131–136 (1995).
Chen, W. et al. Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9, 3669–3674 (1998).
Ishai, A. Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 17, 1729–1741 (2002).
Ganis, G., Thompson, W. L. & Kosslyn, S. M. Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn. Brain Res. 20, 226–241 (2004).
Klein, I., Paradis, A. L., Poline, J. B., Kossly, S. M. & Le Bihan, D. Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J. Cogn. Neurosci. 12 (Suppl. 2), 15–23 (2000).
Lambert, S., Sampaio, E., Scheiber, C. & Mauss, Y. Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement — an fMRI study. Brain Res. 924, 176–183 (2002).
Cui, X., Jeter, C. B., Yang, D., Montague, P. R. & Eagleman, D. M. Vividness of mental imagery: individual variability can be measured objectively. Vision Res. 47, 474–478 (2007).
Amedi, A., Malach, R. & Pascual-Leone, A. Negative BOLD differentiates visual imagery and perception. Neuron 48, 859–872 (2005).
Reddy, L., Tsuchiya, N. & Serre, T. Reading the mind’s eye: decoding category information during mental imagery. Neuroimage 50, 818–825 (2010).
Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Vividness of visual imagery depends on the neural overlap with perception in visual areas. J. Neurosci. 37, 1367–1373 (2017).
Kosslyn, S. M. & Thompson, W. L. When is early visual cortex activated during visual mental imagery? Psychol. Bull. 129, 723–746 (2003).
Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & de Lange, F. P. Shared representations for working memory and mental imagery in early visual cortex. Curr. Biol. 23, 1427–1431 (2013). This paper shows that both imagery and visual working memory can be decoded in the brain based on training on either, showing evidence of a common brain representation.
Koenig-Robert, R. & Pearson, J. Decoding the contents and strength of imagery before volitional engagement. Sci. Rep. 9, 3504 (2019). This paper shows that the content and vividness of a mental image can be decoded in the brain up to 11 seconds before an individual decides which pattern to imagine.
Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K. & Gallant, J. L. A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes. Neuroimage 105, 215–228 (2015). This study shows that mental imagery content can be decoded in the early visual cortex when the decoding model is based on depictive perceptual features.
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).
Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).
Østby, Y. et al. Mental time travel and default-mode network functional connectivity in the developing brain. Proc. Natl Acad. Sci. USA 109, 16800–16804 (2012).
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).
Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).
Gerlach, K. D., Spreng, R. N., Gilmore, A. W. & Schacter, D. L. Solving future problems: default network and executive activity associated with goal-directed mental simulations. Neuroimage 55, 1816–1824 (2011).
Levine, D. N., Warach, J. & Farah, M. Two visual systems in mental imagery. Neurology 35, 1010 (1985).
Keogh, R. & Pearson, J. The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2017).
Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).
Messinger, A., Squire, L. R., Zola, S. M. & Albright, T. D. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl Acad. Sci. USA 98, 12239–12244 (2001).
Schlack, A. & Albright, T. D. Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron 53, 881–890 (2007).
Bannert, M. M. & Bartels, A. Decoding the yellow of a gray banana. Curr. Biol. 23, 2268–2272 (2013).
Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K. R. Memory modulates color appearance. Nat. Neurosci. 9, 1367–1368 (2006).
Meng, M., Remus, D. A. & Tong, F. Filling-in of visual phantoms in the human brain. Nat. Neurosci. 8, 1248–1254 (2005).
Sasaki, Y. & Watanabe, T. The primary visual cortex fills in color. Proc. Natl Acad. Sci. USA 101, 18251–18256 (2004).
Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).
Bergmann, J., Genc, E., Kohler, A., Singer, W. & Pearson, J. Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cereb. Cortex 26, 3838–3850 (2016). This study shows that stronger but less precise imagery is associated with a smaller primary and secondary visual cortex.
Stensaas, S. S., Eddington, D. K. & Dobelle, W. H. The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755 (1974).
Song, C., Schwarzkopf, D. S. & Rees, G. Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation. Nat. Commun. 4, 1–10 (2013).
Dorph-Petersen, K.-A., Pierri, J. N., Wu, Q., Sampson, A. R. & Lewis, D. A. Primary visual cortex volume and total neuron number are reduced in schizophrenia. J. Comp. Neurol. 501, 290–301 (2007).
Sack, A. T., van de Ven, V. G., Etschenberg, S., Schatz, D. & Linden, D. E. J. Enhanced vividness of mental imagery as a trait marker of schizophrenia? Schizophr. Bull. 31, 97–104 (2005).
Maróthi, R. & Kéri, S. Enhanced mental imagery and intact perceptual organization in schizotypal personality disorder. Psychiatry Res. 259, 433–438 (2018).
Morina, N., Leibold, E. & Ehring, T. Vividness of general mental imagery is associated with the occurrence of intrusive memories. J. Behav. Ther. Exp. Psychiatry 44, 221–226 (2013).
Chao, L. L., Lenoci, M. & Neylan, T. C. Effects of post-traumatic stress disorder on occipital lobe function and structure. Neuroreport 23, 412–419 (2012).
Tavanti, M. et al. Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurol. Sci. 33, 59–68 (2011).
Kavanagh, D. J., Andrade, J. & May, J. Imaginary relish and exquisite torture: the elaborated intrusion theory of desire. Psychol. Rev. 112, 446–467 (2005).
Ersche, K. D. et al. Abnormal brain structure implicated in stimulant drug addiction. Science 335, 601–604 (2012).
Song, C., Schwarzkopf, D. S., Kanai, R. & Rees, G. Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain. J. Neurosci. 31, 9472–9480 (2011).
Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).
Winkler, A. M. et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135–1146 (2010).
Bakken, T. E. et al. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proc. Natl Acad. Sci. USA 109, 3985–3990 (2012).
Pearson, J., Rademaker, R. L. & Tong, F. Evaluating the mind’s eye: the metacognition of visual imagery. Psychol. Sci. 22, 1535–1542 (2011).
Rademaker, R. L. & Pearson, J. Training visual imagery: improvements of metacognition, but not imagery strength. Front. Psychol. 3, 224 (2012).
Pearson, J. New directions in mental-imagery research: the binocular-rivalry technique and decoding fMRI patterns. Curr. Dir. Psychol. Sci. 23, 178–183 (2014).
Keogh, R., Bergmann, J. & Pearson, J. Cortical excitability controls the strength of mental imagery. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/093690v1 (2016).
Terhune, D. B., Tai, S., Cowey, A., Popescu, T. & Kadosh, R. C. Enhanced cortical excitability in grapheme-color synesthesia and its modulation. Curr. Biol. 21, 2006–2009 (2011).
Chiou, R., Rich, A. N., Rogers, S. & Pearson, J. Exploring the functional nature of synaesthetic colour: dissociations from colour perception and imagery. Cognition 177, 107–121 (2018).
Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
Wassell, J., Rogers, S. L., Felmingam, K. L., Bryant, R. A. & Pearson, J. Biological psychology. Biol. Psychol. 107, 61–68 (2015).
Kraehenmann, R. et al. LSD increases primary process thinking via serotonin 2A receptor activation. Front. Pharmacol. 8, 418–419 (2017).
Pearson, J., Clifford, C. W. G. & Tong, F. The functional impact of mental imagery on conscious perception. Curr. Biol. 18, 982–986 (2008). This study shows that the content of visual imagery can bias or prime subsequent binocular rivalry; this paper was the basis for using binocular rivalry as a measurement tool for imagery.
Ishai, A. & Sagi, D. Common mechanisms of visual imagery and perception. Science 268, 1772–1774 (1995).
Tartaglia, E. M., Bamert, L., Mast, F. W. & Herzog, M. H. Human perceptual learning by mental imagery. Curr. Biol. 19, 2081–2085 (2009). This study shows that training with a purely imaged visual stimulus transfers to improve performance in perceptual tasks.
Lewis, D. E., O’Reilly, M. J. & Khuu, S. K. Conditioning the mind’s eye associative learning with voluntary mental imagery. Clin. Psychol. Sci. 1, 390–400 (2013).
Laeng, B. & Sulutvedt, U. The eye pupil adjusts to imaginary light. Psychol. Sci. 25, 188–197 (2014).
Brascamp, J. W., Knapen, T. H. J., Kanai, R., van Ee, R. & van den Berg, A. V. Flash suppression and flash facilitation in binocular rivalry. J. Vis. 7, 12 (2007).
Tanaka, Y. & Sagi, D. A perceptual memory for low-contrast visual signals. Proc. Natl Acad. Sci. USA 95, 12729–12733 (1998).
Chang, S., Lewis, D. E. & Pearson, J. The functional effects of color perception and color imagery. J. Vis. 13, 4 (2013).
Slotnick, S. D., Thompson, W. L. & Kosslyn, S. M. Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb. Cortex 15, 1570–1583 (2005).
Thirion, B. et al. Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33, 1104–1116 (2006).
Horikawa, T. & Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8, 15037 (2017).
Keogh, R. & Pearson, J. Mental imagery and visual working memory. PLOS ONE 6, e29221 (2011).
Keogh, R. & Pearson, J. The sensory strength of voluntary visual imagery predicts visual working memory capacity. J. Vis. 14, 7 (2014).
Aydin, C. The differential contributions of visual imagery constructs on autobiographical thinking. Memory 26, 189–200 (2017).
Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).
Tong, F. Imagery and visual working memory: one and the same? Trends Cogn. Sci. 17, 489–490 (2013).
Berger, G. H. & Gaunitz, S. C. Self-rated imagery and encoding strategies in visual memory. Br. J. Psychol. 70, 21–24 (1979).
Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).
Borst, G., Ganis, G., Thompson, W. L. & Kosslyn, S. M. Representations in mental imagery and working memory: evidence from different types of visual masks. Mem. Cognit. 40, 204–217 (2011).
Kang, M.-S., Hong, S. W., Blake, R. & Woodman, G. F. Visual working memory contaminates perception. Psychon Bull. Rev. 18, 860–869 (2011).
Keogh, R. & Pearson, J. The perceptual and phenomenal capacity of mental imagery. Cognition 162, 124–132 (2017). This study shows a new method to measure the capacity function of visual imagery and shows that it is quite limited.
Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).
Pearson, J. & Keogh, R. Redefining visual working memory: a cognitive-strategy, brain-region approach. Curr. Dir. Psychol. Sci. 28, 266–273 (2019).
Greenberg, D. L. & Knowlton, B. J. The role of visual imagery in autobiographical memory. Mem. Cognit. 42, 922–934 (2014).
Sheldon, S., Amaral, R. & Levine, B. Individual differences in visual imagery determine how event information is remembered. Memory 25, 360–369 (2017).
D’Argembeau, A. & Van der Linden, M. Individual differences in the phenomenology of mental time travel: the effect of vivid visual imagery and emotion regulation strategies. Conscious Cogn. 15, 342–350 (2006).
Vannucci, M., Pelagatti, C., Chiorri, C. & Mazzoni, G. Visual object imagery and autobiographical memory: object Imagers are better at remembering their personal past. Memory 24, 455–470 (2015).
Galton, F. Statistics of mental imagery. Mind 5, 301–318 (1880). This paper was the first formal empirical paper investing imagery vividness, including the first report of what is now called aphantasia.
Holmes, E. A. & Mathews, A. Mental imagery in emotion and emotional disorders. Clin. Psychol. Rev. 30, 349–362 (2010).
Hackmann, A., Bennett-Levy, J. & Holmes, E. A. Oxford Guide to Imagery in Cognitive Therapy (Oxford Univ. Press, 2011).
Blackwell, S. E. et al. Positive imagery-based cognitive bias modification as a web-based treatment tool for depressed adults: a randomized controlled trial. Clin. Psychol. Sci. 3, 91–111 (2015).
Crane, C., Shah, D., Barnhofer, T. & Holmes, E. A. Suicidal imagery in a previously depressed community sample. Clin. Psychol. Psychother. 19, 57–69 (2011).
Hales, S. A., Deeprose, C., Goodwin, G. M. & Holmes, E. A. Cognitions in bipolar affective disorder and unipolar depression: imagining suicide. Bipolar Disord. 13, 651–661 (2011).
Holmes, E. A. et al. Mood stability versus mood instability in bipolar disorder: a possible role for emotional mental imagery. Behav. Res. Ther. 49, 707–713 (2011).
Tiggemann, M. & Kemps, E. The phenomenology of food cravings: the role of mental imagery. Appetite 45, 305–313 (2005).
Connor, J. P. et al. Addictive behaviors. Addict. Behav. 39, 721–724 (2014).
May, J., Andrade, J., Panabokke, N. & Kavanagh, D. Visuospatial tasks suppress craving for cigarettes. Behav. Res. Ther. 48, 476–485 (2010).
Michael, T., Ehlers, A., Halligan, S. L. & Clark, D. M. Unwanted memories of assault: what intrusion characteristics are associated with PTSD? Behav. Res. Ther. 43, 613–628 (2005).
Holmes, E. A., James, E. L., Kilford, E. J. & Deeprose, C. Key steps in developing a cognitive vaccine against traumatic flashbacks: visuospatial tetris versus verbal pub quiz. PLOS ONE 5, e13706 (2010).
Shine, J. M. et al. Imagine that: elevated sensory strength of mental imagery in individuals with Parkinson’s disease and visual hallucinations. Proc. R. Soc. B 282, 20142047 (2014).
Foa, E. B., Steketee, G., Turner, R. M. & Fischer, S. C. Effects of imaginal exposure to feared disasters in obsessive-compulsive checkers. Behav. Res. Ther. 18, 449–455 (1980).
Hunt, M. & Fenton, M. Imagery rescripting versus in vivo exposure in the treatment of snake fear. J. Behav. Ther. Exp. Psychiatry 38, 329–344 (2007).
Holmes, E. A. & Mathews, A. Mental imagery and emotion: a special relationship? Emotion 5, 489–497 (2005).
Zeman, A. Z. J. et al. Loss of imagery phenomenology with intact visuo-spatial task performance: a case of ‘blind imagination’. Neuropsychologia 48, 145–155 (2010).
Ungerleider, L. G. & Haxby, J. V. ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).
Jacobs, C., Schwarzkopf, D. S. & Silvanto, J. Visual working memory performance in aphantasia. Cortex 105, 61–73 (2017).
Gray, C. R. & Gummerman, K. The enigmatic eidetic image: a critical examination of methods, data, and theories. Psychol. Bull. 82, 383–407 (1975).
Stromeyer, C. F. & Psotka, J. The detailed texture of eidetic images. Nature 225, 346–349 (1970).
Haber, R. N. Twenty years of haunting eidetic imagery: where’s the ghost? Behav. Brain Sci. 2, 616–617 (1979).
Allport, G. W. Eidetic imagery. Br. J. Psychol. 15, 99–120 (1924).
Kwok, E. L., Leys, G., Koenig-Robert, R. & Pearson, J. Measuring thought-control failure: sensory mechanisms and individual differences. Psychol. Sci. 57, 811–821 (2019). This study shows that, even when people think they have successfully suppressed a mental image, it is still actually there and biases subsequent perception (a possible candidate for unconscious imagery).
Kosslyn, S. M. Image and Mind (Harvard Univ. Press, 1980).
Kosslyn, S. M. Mental images and the brain. Cogn. Neuropsychol. 22, 333–347 (2005).
Pylyshyn, Z. W. What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychol. Bull. 80, 1–24 (1973).
Pylyshyn, Z. Return of the mental image: are there really pictures in the brain? Trends Cogn. Sci. 7, 113–118 (2003). This review provides an updated summary of the imagery debate.
Chang, S. & Pearson, J. The functional effects of prior motion imagery and motion perception. Cortex 105, 83–96 (2017).
Stokes, M., Thompson, R., Cusack, R. & Duncan, J. Top-down activation of shape-specific population codes in visual cortex during mental imagery. J. Neurosci. 29, 1565–1572 (2009).
Amit, E. & Greene, J. D. You see, the ends don’t justify the means: visual imagery and moral judgment. Psychol. Sci. 23, 861–868 (2012).
Dobson, M. & Markham, R. Imagery ability and source monitoring: implications for eyewitness memory. Br. J. Psychol. 84, 111–118 (1993).
Gonsalves, B. et al. Neural evidence that vivid imagining can lead to false remembering. Psychol. Sci. 15, 655–660 (2004).
Bird, C. M., Bisby, J. A. & Burgess, N. The hippocampus and spatial constraints on mental imagery. Front. Hum. Neurosci. 6, 142 (2012).
Jones, L. & Stuth, G. The uses of mental imagery in athletics: an overview. Appl. Prev. Psychol. 6, 101–115 (1997).
Dils, A. T. & Boroditsky, L. Visual motion aftereffect from understanding motion language. Proc. Natl Acad. Sci. USA 107, 16396–16400 (2010).
Christian, B. M., Miles, L. K., Parkinson, C. & Macrae, C. N. Visual perspective and the characteristics of mind wandering. Front. Psychol. 4, 699 (2013).
Palmiero, M., Cardi, V. & Belardinelli, M. O. The role of vividness of visual mental imagery on different dimensions of creativity. Creat. Res. J. 23, 372–375 (2011).
Acknowledgements
The author thanks R. Keogh, R. Koenig-Robert and A. Dawes for helpful feedback and discussion on this paper. This paper, and some of the work discussed in it, was supported by Australian National Health and Medical Research Council grants APP1024800, APP1046198 and APP1085404, a Career Development Fellowship APP1049596 and an Australian Research Council discovery project grant DP140101560.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Additional information
Peer review informationNature Reviews Neuroscience thanks D. Kavanagh, J. Hohwy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Reverse directionality
-
The reverse direction of neural information flow, for example, from the top-down, as opposed to the bottom-up.
- Voxel-wise models of perception
-
Magnetic resonance imaging and functional magnetic resonance imaging decoding methods that are constrained by or based on individual voxel responses to perception, which are then used to decode imagery.
- Spatial transformations
-
Transformations in a spatial domain.
- Qualia
-
The conscious sense or feeling of something, different from detection.
- Schizotypal personality disorder
-
A mental disorder characterized by social anxiety, thought disorder, paranoid ideation, derealization and transient psychosis.
Rights and permissions
About this article
Cite this article
Pearson, J. The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci 20, 624–634 (2019). https://doi.org/10.1038/s41583-019-0202-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-019-0202-9
This article is cited by
-
Visual imagination can influence visual perception – towards an experimental paradigm to measure imagination
Scientific Reports (2024)
-
Representations of imaginary scenes and their properties in cortical alpha activity
Scientific Reports (2024)
-
Predicting the subjective intensity of imagined experiences from electrophysiological measures of oscillatory brain activity
Scientific Reports (2024)
-
Visual hallucinations induced by Ganzflicker and Ganzfeld differ in frequency, complexity, and content
Scientific Reports (2024)
-
Evaluating cognitive penetrability of perception across the senses
Nature Reviews Psychology (2024)