Abstract
LS I +61° 303 is one of the rare gamma-ray binaries1 that emit most of their luminosity in photons with energies beyond 100 MeV (ref. 2). It is well characterized—the ~26.5 day orbital period is clearly detected at many wavelengths2,3,4—and other aspects of its multifrequency behaviour make it the most interesting example of its class. The morphology of high-resolution radio images changes with orbital phase, displaying a cometary tail pointing away from the high-mass star component5 and LS I +61° 303 also shows superorbital variability3,6,7,8,9. A couple of energetic (~1037 erg s−1), short, magnetar-like bursts have been plausibly ascribed to it10,11,12,13. Although the phenomenology of LS I +61° 303 has been the subject of theoretical scrutiny for decades, there has been a lack of certainty regarding the nature of the compact object in the binary that has hampered our understanding of the source. Here, using observations with the Five-hundred-meter Aperture Spherical radio Telescope, we report the existence of transient radio pulsations from the direction of LS I +61° 303 with a period P = 269.15508 ± 0.00016 ms at a significance of >20σ. These pulsations strongly argue for the existence of a rotating neutron star within LS I +61° 303.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.
Code availability
PRESTO is available at https://www.cv.nrao.edu/~sransom/presto/ and BEAR is available at https://psr.pku.edu.cn/index.php/publications/software.
References
Dubus, G. Gamma-ray binaries and related systems. Astron. Astrophys. Rev. 21, 64 (2013).
Abdo, A. A., Ackermann, M. & Ajello, M. et al. Fermi LAT observations of LS I +61 303: first detection of an orbital modulation in GeV gamma rays. Astrophys. J. Lett. 701, L123–L128 (2009).
Gregory, P. C. Bayesian analysis of radio observations of the Be X-ray binary LS I +61 303. Astrophys. J. 575, 427–434 (2002).
Albert, J., Aliu, E. & Anderhub, H. et al. Multiwavelength (radio, X-ray, and γ-ray) observations of the γ-ray binary LS I +61 303. Astrophys. J. 684, 1351–1358 (2008).
Dhawan, V., Mioduszewski, A. & Rupen, M. LS I +61 303 is a Be-pulsar binary, not a microquasar. In VI Microquasar Workshop: Microquasars and Beyond 52.1 (ed. Belloni, T.) (Proceedings of Science, 2006).
Chernyakova, M. et al. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303. Astrophys. J. Lett. 747, L29 (2012).
Li, J., Torres, D. F. & Zhang, S. et al. Unveiling the super-orbital modulation of LS I +61 303 in X-Rays. Astrophys. J. Lett. 744, L13 (2012).
Ackermann, M. et al. Associating long-term γ-ray variability with the superorbital period of LS I +61∘303. Astrophys. J. Lett. 773, L35 (2013).
Ahnen, M. L. et al. Super-orbital variability of LS I +61∘303 at TeV energies. Astron. Astrophys. 591, A76 (2016).
De Pasquale, M., Barthelmy, S. D. & Baumgartner, W. H. et al. Swift trigger 324362 (LS I +61 303 ?). GRB Coord. Netw. Circ. No. 8209 (2008).
Barthelmy, S. D. et al. Swift-BAT/-XRT refined analysis on trigger 324362 (LS I +61 303). GRB Coord. Netw. Circ. No. 8215 (2008).
Muñoz-Arjonilla, A. J. et al. Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61 303. Astron. Astrophys. 497, 457–461 (2009).
Torres, D. F., Rea, N. & Esposito, P. et al. A magnetar-like event from LS I +61 303 and its nature as a gamma-ray binary. Astrophys. J. 744, 106 (2012).
Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).
Casares, J., Ribas, I., Paredes, J. M., Martí, J. & Allende Prieto, C. Orbital parameters of the microquasar LS I +61 303. Mon. Not. R. Astron. Soc. 360, 1105–1109 (2005).
Grundstrom, E. D., Caballero-Nieves, S. M. & Gies, D. R. et al. Joint Hα and X-ray observations of massive x-ray binaries. II. The Be X-ray binary and microquasar LS I +61 303. Astrophys. J. 656, 437–443 (2007).
Aragona, C. et al. The orbits of the γ-ray binaries LS I +61 303 and LS 5039. Astrophys. J. 698, 514–518 (2009).
Massi, M. LS I +61∘303 in the context of microquasars. Astron. Astrophys. 422, 267–270 (2004).
Maraschi, L. & Treves, A. A model for LS I 61 303. Mon. Not. R. Astron. Soc. 194, 1P–5P (1981).
Zamanov, R. K. An ejector-propeller model for LS I +61 303. Mon. Not. R. Astron. Soc. 272, 308–310 (1995).
McSwain, M. V., Ray, P. S. & Ransom, S. M. et al. A radio pulsar search of the γ-ray binaries LS I +61 303 and LS 5039. Astrophys. J. 738, 105 (2011).
Cañellas, A. et al. Search for radio pulsations in LS I +61 303. Astron. Astrophys. 543, A122 (2012).
Rea, N., Torres, D. F. & van der Klis, M. et al. Deep Chandra observations of TeV binaries—I. LSI+61 303. Mon. Not. R. Astron. Soc. 405, 2206–2214 (2010).
Hadasch, D., Torres, D. F. & Tanaka, T. et al. Long-term monitoring of the high-energy γ-ray emission from LS I +61 303 and LS 5039. Astrophys. J. 749, 54 (2012).
Zdziarski, A. A., Neronov, A. & Chernyakova, M. A compact pulsar wind nebula model of the γ-ray-loud binary LS I +61∘303. Mon. Not. R. Astron. Soc. 403, 1873–1886 (2010).
Caliandro, G. A., Torres, D. F. & Rea, N. Impact of the orbital uncertainties on the timing of pulsars in binary systems. Mon. Not. R. Astron. Soc. 427, 2251–2274 (2012).
Ransom, S. M., Eikenberry, S. S. & Middleditch, J. Fourier techniques for very long astrophysical time-series analysis. Astron. J. 124, 1788–1809 (2002).
Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).
Cordes, J. M. & Rickett, B. J. Diffractive interstellar scintillation timescales and velocities. Astrophys. J. 507, 846–860 (1998).
Narayan, R. The physics of pulsar scintillation. Phil. Trans. R. Soc. Lond. A 341, 151–165 (1992).
Sheikh, S. Z. & MacDonald, M. G. A statistical analysis of the nulling pulsar population. Mon. Not. R. Astron. Soc. 502, 4669–4679 (2021).
Wang, N., Manchester, R. N. & Johnston, S. Pulsar nulling and mode changing. Mon. Not. R. Astron. Soc. 377, 1383–1392 (2007).
McLaughlin, M. A. et al. Transient radio bursts from rotating neutron stars. Nature 439, 817–820 (2006).
Johnston, S., Ball, L., Wang, N. & Manchester, R. N. Radio observations of PSR B1259-63 through the 2004 periastron passage. Mon. Not. R. Astron. Soc. 358, 1069–1075 (2005).
Bogdanov, S. et al. Simultaneous Chandra and VLA observations of the transitional millisecond pulsar PSR J1023+0038: anti-correlated X-ray and radio variability. Astrophys. J. 856, 54 (2018).
Papitto, A., Torres, D. F. & Rea, N. Possible changes of state and relevant timescales for a neutron star in LS I +61∘303. Astrophys. J. 756, 188 (2012).
Nan, R. et al. The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) project. Int. J. Mod. Phys. D 20, 989–1024 (2011).
Jiang, P. et al. Commissioning progress of the FAST. Sci. China Phys. Mech. Astron. 62, 959502 (2019).
Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21, 107 (2021).
Qian, L. et al. FAST: its scientific achievements and prospects. Innovation 1, 100053 (2020).
Pan, Z. et al. FAST Globular Cluster Pulsar survey: twenty-four pulsars discovered in 15 globular clusters. Astrophys. J. Lett. 915, L28 (2021).
Lynch, R. S., Ransom, S. M., Freire, P. C. C. & Stairs, I. H. Six new recycled globular cluster pulsars discovered with the Green Bank Telescope. Astrophys. J. 734, 89 (2011).
Men, Y. P. et al. Piggyback search for fast radio bursts using Nanshan 26 m and Kunming 40 m radio telescopes—I. Observing and data analysis systems, discovery of a mysterious peryton. Mon. Not. R. Astron. Soc. 488, 3957–3971 (2019).
Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012).
Jiang, P. et al. The fundamental performance of FAST with 19-beam receiver at L band. Res. Astron. Astrophys. 20, 064 (2020).
Lang, K. R. Interstellar scintillation of pulsar radiation. Astrophys. J. 164, 249 (1971).
Romani, R. W., Narayan, R. & Blandford, R. Refractive effects in pulsar scintillation. Mon. Not. R. Astron. Soc. 220, 19–49 (1986).
Bansal, K., Taylor, G. B., Stovall, K. & Dowell, J. Scattering study of pulsars below 100 MHz using LWA1. Astrophys. J. 875, 146 (2019).
Kravtsov, V. et al. Orbital variability of the optical linear polarization of the γ-ray binary LS I +61∘ 303 and new constraints on the orbital parameters. Astron. Astrophys. 643, A170 (2020).
Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).
Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).
Beniamini, P., Hotokezaka, K., van der Horst, A. & Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 487, 1426–1438 (2019).
Acknowledgements
This work made use of the data from FAST. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. We acknowledge the use of the ATNF Pulsar Catalogue. S.-S.W. and B.-J.W. thank Z. Pan for discussions on the FAST data analysis. S.-S.W. thanks Z.-X. Wang, S.-N. Zhang and K. Lee for many valuable discussions. J.L., D.F.T. and A.P. acknowledge discussions with the international team on ‘Understanding and unifying the gamma rays emitting scenarios in high mass and low mass X-ray binaries’ of the ISSI (International Space Science Institute), Beijing. We acknowledge support from National Key R&D programme of China grant numbers 2017YFA0402602 and 2021YFA0718500, National SKA Program of China grant numbers 2020SKA0120100 and 2020SKA0120201, National Natural Science Foundation of China grant numbers U2038103, 11733009, U2031205, U1938109 and 11873032, the Youth Innovation Promotion Association of the CAS (grant id 2018075), the Chinese Academy of Sciences Presidential Fellowship Initiative 2021VMA0001, National Foreign Experts Program of Ministry of Science and Technology of the People’s Republic of China grant number G2021200001L and the International Visiting Professorship programme of the University of Science and Technology of China grant number 2021BVR05. S.-S.W. acknowledges financial support from the Jiangsu Qing Lan Project. D.F.T. also acknowledges grants PID2021-124581OB-I00, PGC2018-095512-B-I00 and Spanish programme Unidad de Excelencia ‘María de Maeztu’ grant number CEX2020-001058-M. A.P. acknowledges financial support from the Italian Space Agency (ASI) and National Institute for Astrophysics (INAF) under grant agreement numbers ASI-INAF I/037/12/0 and ASI-INAF n.2017-14-H.0, from INAF ’Sostegno alla ricerca scientifica main streams dell’INAF’, Presidential Decree 43/2018 and from PHAROS COST Action number 16214.
Author information
Authors and Affiliations
Contributions
S.-S.W. proposed the observational project. The FAST team led by P.J. designed and scheduled the observations during the FAST commissioning stage. L.Q. carried out the observations and B.J-.W. analysed the data. D.F.T., J.L. and A.P. contributed to interpreting the results. D.F.T., S.-S.W. and B.-J.W. wrote the paper. P.J., R.X., J.-Z.Y., Q.-Z.L., M.-Y.G. and Q.-R.Y. participated in the interpretation of the results. All authors discussed the contents of the paper and contributed to the preparation of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Jumpei Takata, Scott Ransom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–5 and Table 1.
Rights and permissions
About this article
Cite this article
Weng, SS., Qian, L., Wang, BJ. et al. Radio pulsations from a neutron star within the gamma-ray binary LS I +61° 303. Nat Astron 6, 698–702 (2022). https://doi.org/10.1038/s41550-022-01630-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01630-1
This article is cited by
-
Repeating fast radio burst 20201124A originates from a magnetar/Be star binary
Nature Communications (2022)