Genetic Gain and Inbreeding in Different Simulated Genomic Selection Schemes for Grain Yield and Oil Content in Safflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Outline
2.2. Initial Phenotypes and Genotypes
2.3. Simulation of the Proposed GS
2.4. Genetic Gain and Inbreeding
3. Results
3.1. Initial Phenotypes and Genotypes
3.2. Genetic Gains
3.3. Inbreeding Coefficient
4. Discussion
4.1. Genetic Gain and Inbreeding at the Early Cycle
4.2. Multi-Trait Genomic Selection
4.3. Optimization of the Breeding Program
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meuwissen, T.H.; Hayes, B.J. Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.E.; Hayes, B.J. Genomic selection. J. Anim. Breed. Genet. 2007, 124, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Zou, C.; Lu, Y.; Xie, C.; Zhang, X.; Prasanna, B.M.; Olsen, M.S. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 2017, 68, 2641–2666. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.N.; Juma, R.U.; Biswas, P.S.; Arbelaez, J.D.; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M.; Ng, E.H. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor. Appl. Genet. 2019, 132, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Vivek, B.S.; Krishna, G.K.; Vengadessan, V.; Babu, R.; Zaidi, P.H.; Kha, L.Q.; Mandal, S.S.; Grudloyma, P.; Takalkar, S.; Krothapalli, K.; et al. Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize. Plant Genome 2017, 10, plantgenome2016.07.0070. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Cogan, N.O.I.; Pembleton, L.W.; Spangenberg, G.C.; Forster, J.W.; Hayes, B.J.; Daetwyler, H.D. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass. Plant Genome 2016, 9, plantgenome2015.06.0046. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.; Peixoto, M.A.; Peixoto, L.d.A.; Romero, J.V.; Bhering, L.L. Multi-trait genomic selection indexes applied to identification of superior genotypes. Bragantia 2021, 80, e3621. [Google Scholar] [CrossRef]
- Rapp, M.; Lein, V.; Lacoudre, F.; Lafferty, J.; Müller, E.; Vida, G.; Bozhanova, V.; Ibraliu, A.; Thorwarth, P.; Piepho, H.P.; et al. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theor. Appl. Genet. 2018, 131, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Rutkoski, J.; Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Poland, J.; Jannink, J.L.; Sorrells, M.E. Genetic Gain from Phenotypic and Genomic Selection for Quantitative Resistance to Stem Rust of Wheat. Plant Genome 2015, 8, plantgenome2014.10.0074. [Google Scholar] [CrossRef]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Weigel, K.A. Controlling Inbreeding in Modern Breeding Programs. J. Dairy Sci. 2001, 84, E177–E184. [Google Scholar] [CrossRef]
- De Beukelaer, H.; Badke, Y.; Fack, V.; De Meyer, G. Moving Beyond Managing Realized Genomic Relationship in Long-Term Genomic Selection. Genetics 2017, 206, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Allier, A.; Lehermeier, C.; Charcosset, A.; Moreau, L.; Teyssèdre, S. Improving Short- and Long-Term Genetic Gain by Accounting for within-Family Variance in Optimal Cross-Selection. Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Meuwissen, T.H.E.; Sørensen, A.C.; Berg, P. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs. Genet. Sel. Evol. 2015, 47, 19. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Shi, F.; Hayes, B.J.; Daetwyler, H.D. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants. Theor. Appl. Genet. 2017, 130, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Woolliams, J.A.; Berg, P.; Dagnachew, B.S.; Meuwissen, T.H.E. Genetic contributions and their optimization. J. Anim. Breed. Genet. 2015, 132, 89–99. [Google Scholar] [CrossRef]
- Merrick, L.F.; Herr, A.W.; Sandhu, K.S.; Lozada, D.N.; Carter, A.H. Optimizing Plant Breeding Programs for Genomic Selection. Agronomy 2022, 12, 714. [Google Scholar] [CrossRef]
- Li, X.; Zhu, C.; Wang, J.; Yu, J. Chapter six—Computer Simulation in Plant Breeding. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 116, pp. 219–264. [Google Scholar]
- Lübberstedt, T.; Beavis, W.; Suza, W. Modeling and Data Simulation. In Molecular Plant Breeding; Suza, W., Lamkey, K., Eds.; Iowa State University Digital Press: Ames, IA, USA, 2023. [Google Scholar]
- Longin, C.F.H.; Mi, X.; Würschum, T. Genomic selection in wheat: Optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor. Appl. Genet. 2015, 128, 1297–1306. [Google Scholar] [CrossRef]
- Lorenz, A.J. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: A simulation experiment. G3 Genes Genomes Genet. 2013, 3, 481–491. [Google Scholar] [CrossRef]
- Fritsche-Neto, R.; Ali, J.; De Asis, E.J.; Allahgholipour, M.; Labroo, M.R. Improving hybrid rice breeding programs via stochastic simulations: Number of parents, number of hybrids, tester update, and genomic prediction of hybrid performance. Theor. Appl. Genet. 2023, 137, 3. [Google Scholar] [CrossRef]
- Liu, H.; Tessema, B.B.; Jensen, J.; Cericola, F.; Andersen, J.R.; Sørensen, A.C. ADAM-Plant: A Software for Stochastic Simulations of Plant Breeding from Molecular to Phenotypic Level and From Simple Selection to Complex Speed Breeding Programs. Front. Plant Sci. 2019, 9, 425945. [Google Scholar] [CrossRef]
- Gaynor, R.C.; Gorjanc, G.; Hickey, J.M. AlphaSimR: An R package for breeding program simulations. G3 2021, 11, jkaa017. [Google Scholar] [CrossRef]
- Shrote, R.Z.; Thompson, A.M. PyBrOpS: A Python package for breeding program simulation and optimization for multi-objective breeding. bioRxiv 2023. [Google Scholar] [CrossRef]
- Golkar, P. Breeding improvements in safflower (Carthamus tinctorius L.): A review. Aust. J. Crop Sci. 2014, 8, 1079–1085. [Google Scholar]
- Jochinke, D.; Nick, W.; Trent, P.; Rob, N. Growing safflower in Australia: Part 1—History, experiences and current constraints on production. In Proceedings of the 7th International Safflower Conference, Waga Wagga, Australia, 3–9 November 2008. [Google Scholar]
- Khalid, N.; Khan, R.S.; Hussain, M.I.; Farooq, M.; Ahmad, A.; Ahmed, I. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient—A review. Trends Food Sci. Technol. 2017, 66, 176–186. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Petkowski, J.; Kant, S.; Hayden, M.J.; Daetwyler, H.D. Genomic prediction and genomic heritability of grain yield and its related traits in a safflower genebank collection. Plant Genome 2021, 14, e20064. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, Z.; Khansefid, M.; Tibbits, J.F.; Hayden, M.J. Genomic prediction and selection response for grain yield in safflower. Front. Genet. 2023, 14, 1129433. [Google Scholar] [CrossRef]
- Money, D.; Gardner, K.; Migicovsky, Z.; Schwaninger, H.; Zhong, G.-Y.; Myles, S. LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. G3 Genes Genomes Genet. 2015, 5, 2383–2390. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Erbe, M.; Hayes, B.J.; Matukumalli, L.K.; Goswami, S.; Bowman, P.J.; Reich, C.M.; Mason, B.A.; Goddard, M.E. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 2012, 95, 4114–4129. [Google Scholar] [CrossRef]
- Falconer, D.S.; Falconer, M. Introduction to Quantitative Genetics; Textbook Publishers: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ali, M.; Zhang, L.; DeLacy, I.; Arief, V.; Dieters, M.; Pfeiffer, W.H.; Wang, J.; Li, H. Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis. Crop J. 2020, 8, 866–877. [Google Scholar] [CrossRef]
- Muleta, K.T.; Pressoir, G.; Morris, G.P. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study. G3 Genes Genomes Genet. 2019, 9, 391–401. [Google Scholar] [CrossRef]
- Zhao, H.; Savin, K.W.; Li, Y.; Breen, E.J.; Maharjan, P.; Tibbits, J.F.; Kant, S.; Hayden, M.J.; Daetwyler, H.D. Genome-wide association studies dissect the G × E interaction for agronomic traits in a worldwide collection of safflowers (Carthamus tinctorius L.). Mol. Breed. 2022, 42, 24. [Google Scholar] [CrossRef]
- Allier, A.; Teyssèdre, S.; Lehermeier, C.; Moreau, L.; Charcosset, A. Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genom. 2020, 21, 349. [Google Scholar] [CrossRef]
- Pryce, J.E.; Hayes, B.J.; Goddard, M.E. Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. J. Dairy Sci. 2012, 95, 377–388. [Google Scholar] [CrossRef]
- Akdemir, D.; Sánchez, J.I. Efficient Breeding by Genomic Mating. Front. Genet. 2016, 7. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 1997, 75, 934–940. [Google Scholar] [CrossRef]
- de Oliveira Neto, S.S.; Zeffa, D.M.; Freiria, G.H.; Zoz, T.; da Silva, C.J.; Zanotto, M.D.; Sobrinho, R.L.; Alamri, S.A.; Okla, M.K.; AbdElgawad, H. Adaptability and Stability of Safflower Genotypes for Oil Production. Plants 2022, 11, 708. [Google Scholar] [CrossRef]
- Abou Chehade, L.; Angelini, L.G.; Tavarini, S. Genotype and Seasonal Variation Affect Yield and Oil Quality of Safflower (Carthamus tinctorius L.) under Mediterranean Conditions. Agronomy 2022, 12, 122. [Google Scholar] [CrossRef]
- Kolawole, A.O.; Menkir, A.; Blay, E.; Ofori, K.; Kling, J.G. Genetic Advance in Grain Yield and Other Traits in Two Tropical Maize Composites Developed via Reciprocal Recurrent Selection. Crop Sci. 2018, 58, 2360–2369. [Google Scholar] [CrossRef]
- Rana, M.; Sood, A.; Hussain, W.; Kaldate, R.; Sharma, T.R.; Gill, R.K.; Kumar, S.; Singh, S. Chapter 6—Gene Pyramiding and Multiple Character Breeding. In Lentils; Singh, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 83–124. [Google Scholar] [CrossRef]
- Cowling, W.A.; Li, L.; Siddique, K.H.M.; Banks, R.G.; Kinghorn, B.P. Modeling crop breeding for global food security during climate change. Food Energy Secur. 2019, 8, e00157. [Google Scholar] [CrossRef]
- Moeinizade, S.; Kusmec, A.; Hu, G.; Wang, L.; Schnable, P.S. Multi-trait Genomic Selection Methods for Crop Improvement. Genetics 2020, 215, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Daetwyler, H.D.; Hayden, M.J.; Spangenberg, G.C.; Hayes, B.J. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection. Genetics 2015, 200, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, R.C.; Gorjanc, G.; Bentley, A.R.; Ober, E.S.; Howell, P.; Jackson, R.; Mackay, I.J.; Hickey, J.M. A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines. Crop Sci. 2017, 57, 2372–2386. [Google Scholar] [CrossRef]
- Li, Y.; Kaur, S.; Pembleton, L.W.; Valipour-Kahrood, H.; Rosewarne, G.M.; Daetwyler, H.D. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs. Theor. Appl. Genet. 2022, 135, 1813–1828. [Google Scholar] [CrossRef] [PubMed]
- Gorjanc, G.; Gaynor, R.C.; Hickey, J.M. Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor. Appl. Genet. 2018, 131, 1953–1966. [Google Scholar] [CrossRef]
- Biswas, P.S.; Ahmed, M.M.E.; Afrin, W.; Rahman, A.; Shalahuddin, A.K.M.; Islam, R.; Akter, F.; Syed, M.A.; Sarker, M.R.A.; Ifterkharuddaula, K.M.; et al. Enhancing genetic gain through the application of genomic selection in developing irrigated rice for the favorable ecosystem in Bangladesh. Front. Genet. 2023, 14, 1083221. [Google Scholar] [CrossRef]
Trait | Cycles | GS Model | |||
---|---|---|---|---|---|
GY | OL | GY + OL | GY + OL + Rel | ||
GY | c1 | 1.609 | 0.499 | 1.175 | 0.995 |
c2 | 0.454 | 0.013 | 0.256 | 0.373 | |
c3 | 0.308 | 0.01 | 0.206 | 0.233 | |
c4 | 0.238 | −0.003 | 0.145 | 0.188 | |
Sum | 2.609 | 0.519 | 1.782 | 1.789 | |
OL | c1 | 0.204 | 1.939 | 1.632 | 1.112 |
c2 | −0.125 | 0.365 | 0.305 | 0.618 | |
c3 | −0.029 | 0.254 | 0.166 | 0.279 | |
c4 | −0.025 | 0.219 | 0.140 | 0.163 | |
Sum | 0.025 | 2.777 | 2.243 | 2.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Khansefid, M.; Lin, Z.; Hayden, M.J. Genetic Gain and Inbreeding in Different Simulated Genomic Selection Schemes for Grain Yield and Oil Content in Safflower. Plants 2024, 13, 1577. https://doi.org/10.3390/plants13111577
Zhao H, Khansefid M, Lin Z, Hayden MJ. Genetic Gain and Inbreeding in Different Simulated Genomic Selection Schemes for Grain Yield and Oil Content in Safflower. Plants. 2024; 13(11):1577. https://doi.org/10.3390/plants13111577
Chicago/Turabian StyleZhao, Huanhuan, Majid Khansefid, Zibei Lin, and Matthew J. Hayden. 2024. "Genetic Gain and Inbreeding in Different Simulated Genomic Selection Schemes for Grain Yield and Oil Content in Safflower" Plants 13, no. 11: 1577. https://doi.org/10.3390/plants13111577
APA StyleZhao, H., Khansefid, M., Lin, Z., & Hayden, M. J. (2024). Genetic Gain and Inbreeding in Different Simulated Genomic Selection Schemes for Grain Yield and Oil Content in Safflower. Plants, 13(11), 1577. https://doi.org/10.3390/plants13111577