iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.5220/0011706400003417
SciTePress - Publication Details
loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Dorsaf Sebai ; Faouzi Ghorbel and Sounia Messbahi

Affiliation: Cristal Laboratory, National School of Computer Science, Manouba University, Tunisia

Keyword(s): Scalable High Efficiency Video Coding, Depth Maps, Coding Units, Quality Scalability.

Abstract: Scalable High Efficiency Video Coding (SHVC) is used to adaptively encode texture images. SHVC architecture is composed of Base and Enhancement Layers (BL and EL), with an interlayer picture processing module between them. In order to ensure effective encoding, each picture is divided into a certain number of Coding Units (CUs), with different depths, composing the Coding Tree Unit (CTU). Being initially dedicated to texture images, SHVC does not provide the same efficiency when applied to depth maps. To understand the causes behind, we propose to study the SHVC CTU partitioning for depth maps. This can be a starting point to propose an efficient 3D video scalable compression. Main observations of this study show that the depth of most CUs is 2 and 3 for texture images. However, this depth is either 0 or 1 for depth maps. Moreover, CUs depths frequently change when passing from the base and enhancement layers of SHVC for the non-flat regions. This is not the case for the smooth regio ns that generally preserve the same CUs depths in the two SHVC layers. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 173.236.136.203

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Sebai, D. ; Ghorbel, F. and Messbahi, S. (2023). Study of Coding Units Depth for Depth Maps Quality Scalable Compression Using SHVC. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP; ISBN 978-989-758-634-7; ISSN 2184-4321, SciTePress, pages 114-120. DOI: 10.5220/0011706400003417

@conference{visapp23,
author={Dorsaf Sebai and Faouzi Ghorbel and Sounia Messbahi},
title={Study of Coding Units Depth for Depth Maps Quality Scalable Compression Using SHVC},
booktitle={Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP},
year={2023},
pages={114-120},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011706400003417},
isbn={978-989-758-634-7},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP
TI - Study of Coding Units Depth for Depth Maps Quality Scalable Compression Using SHVC
SN - 978-989-758-634-7
IS - 2184-4321
AU - Sebai, D.
AU - Ghorbel, F.
AU - Messbahi, S.
PY - 2023
SP - 114
EP - 120
DO - 10.5220/0011706400003417
PB - SciTePress