Paper:
Calibration of Invar Angular Interferometer Optics with Multi-Step Method
Zi Xue, Yao Huang, Heyan Wang, and Hu Lin
National Institute of Metrology
No.18, Bei San Huan Dong Lu, Beijing 100029, China
- [1] BIPM SI Brochure 8th edn, http://www.bipm.org/en/si/
[Accessed March 5, 2014] - [2] A. Just, M. Krause, R. Probst, and R. Wittekopf, “Calibration of high-resolution electronic autocollimators against an angle comparator,” Metrologia, Vol.40, pp. 288-294, 2003.
- [3] R. D. Geckeler, I. Weingartner, A. Just, and R. Probst, “Use and traceable calibration of autocollimators for ultra-precision measurement of slop and topography,” Proc. SPIE, Vol.4401, pp. 184-95, 2001.
- [4] R. D. Geckeler and A. Just, “Optimized use and calibration of autocollimators in deflectometry,” Proc. SPIE, Vol.6704, 670470, 2007.
- [5] R. D. Geckeler and A. Just, “Distance-dependent influences on angle metrology with autocollimators in deflectometry,” Proc. SPIE, Vol.7077, 70770B, 2008.
- [6] J. C. Evans and C. O. Taylerson, “Measurement of Angle in Engineering,” National Physical Laboratory Notes on Applied Science, 1986.
- [7] P. J. Sim, “Angle standards and their calibration,” Modern techniques in Metrology, pp. 102-121, 1984.
- [8] R. D. Geckeler and A. Just, “Angle comparison using an autocollimator EURAMET.L-K3 2009 Technical Protocol,” EURAMET Project No.1074.
- [9] http://kcdb.bipm.org/AppendixB/appbresults/EURAMET.L-K3.2009/ [Accessed March 25, 2014]
- [10] T. Yandayan, B. Ozgur, N. Karaboce, and O. Yaman, “High precision small angle generator for realization of SI unit of plane angle and calibration of high precision autocollimators,” Meas. Sci. Technol., Vol.23, 094006, 2012.
- [11] W. T. Estler and Y. H. Queen, “An advanced angle metrology system,” CIRP Ann., Vol.42, pp. 573-576, 1993.
- [12] W. T. Estler, “Uncertainty Analysis for Angle Calibrations Using Circle Closure,” J. Res. Natl. Inst. Stand. Technol., Vol.103, pp. 141-151, 1998.
- [13] R. Probst, R. Wittekopf, M. Krause, H. Dangschat, and A. Ernst, “The new PTB angle comparator,” Meas. Sci. Technol., Vol.9, pp. 1059-1066, 1998.
- [14] T. Yandayan, “Application of the novel technique for calibration of 23-sided polygon with non-integer subdivision of indexing table,” IMEKO 8th Int. Symp. on ISMQC, Vol.12-15, pp. 769-74, 2004.
- [15] T. Watanabe, H. Fujimoto, K. Nakayama, M. Kajitani, and T. Masuda, “Calibration of polygon mirror by the rotary ecncoder calibration system,” Proc. 17th IMEKO World Congress, Vol.22-27, pp. 1890-1893, 2003.
- [16] S. Kiyono, S. Zhang, and T. Uda, “Self-calibration of precision angle sensor and polygon mirror,” Measurement, Vol.21, pp. 125-136, 1997.
- [17] ISO/IEC 2008 Uncertainty of measurement: part 3, “Guide to the expression of uncertainty in measurement,” ISO/IEC Guide 98-3, 2008.
- [18] T. Masuda and M. Kajitani, “High Accuracy Calibration System for Angular Encoders,” J. of Robotics and Mechatronics, Vol.5, No.5, pp. 448-452, 1993.
- [19] T. Watanabe, H. Fujimoto, and T. Masuda, “Self-Calibratable Rotary Encoder,” J. of Physics, Conf. Series, Vol.13, pp. 240-245, 2005.
- [20] R. D. Geckeler, A. Link, M. Krause, and C. Elster, “Capabilities and limitations of the self-calibration of angle encoders,” Meas. Sci. Technol., Vol.25, 055003, 2014.
- [21] T. Masuda and M. Kajitani, “High accuracy calibration system for angular encoders,” J. of Robotics and Mechatronics, Vol.5, pp. 448-452, 1993.
- [22] T. Watanabe, H. Fujimoto, K. Nakayama, T. Masuda, and M. Kajitani, “Automatic high precision calibration system for angle encoder,” Proc. SPIE, Vol.5190, pp. 400-409, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.