Emotional design entails a bidirectional affective mapping process between affective needs in the customer domain and design elements in the designer domain. To leverage both affective and engineering concerns, this paper proposes a hybrid association mining and refinement (AMR) system to support affective mapping decisions. Rough set and K optimal rule discovery techniques are applied to identify hidden relations underlying forward affective mapping. A rule refinement measure is formulated in terms of affective quality. Ordinal logistic regression (OLR) is derived to model backward affective mapping. Based on conjoint analysis, a weighted OLR model is developed as a benchmark of the initial OLR model for backward refinement. A case study of truck cab interior design is presented to demonstrate the feasibility and potential of the hybrid AMR system for decision support to forward and backward affective mapping.

1.
Norman
,
D. A.
, 2004,
Emotional Design: Why We Love (or Hate) Everyday Things
,
Basic Books
,
New York
.
2.
Helander
,
M. G.
, and
Tham
,
M. P.
, 2003, “
Hedonomics—Affective Human Factors Design
,”
Ergonomics
0014-0139,
46
(
13–14
), pp.
1269
1272
.
3.
Jordan
,
P. W.
, 2000,
Designing Pleasurable Products: An Introduction to the New Human Factors
,
Taylor & Francis
,
London
.
4.
Helander
,
M. G.
,
Khalid
,
H. M.
, and
Tham
,
M. P.
, 2001, “
Proceedings of the International Conference on Affective Human Factors Design
,”
International Conference on Affective Human Factors Design
, Singapore, Jun. 27–29.
5.
Millard
,
N.
, 2006, “
Learning From the ‘Wow’ Factor—How to Engage Customers Through the Design of Effective Affective Customer Experiences
,”
BT Technol. J.
1358-3948,
24
(
1
), pp.
11
16
.
6.
Zhang
,
P.
, and
Li
,
N.
, 2005, “
The Importance of Affective Quality
,”
Commun. ACM
0001-0782,
48
(
9
), pp.
105
108
.
7.
Vandenbos
,
G. R.
, 2006,
APA Dictionary of Psychology
,
American Psychological Association
,
Washington, DC
.
8.
Kolb
,
L. C.
, and
Brodie
,
H. K. H.
, 1982,
Modern Clinical Psychiatry
,
Saunders
,
Philadelphia
.
9.
Dolan
,
R. J.
, 2002, “
Emotion, Cognition, and Behavior
,”
Science, New Series
,
298
(
5596
), pp.
1191
1194
.
10.
Nagamachi
,
M.
, 1995, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergonom.
0169-8141,
15
(
1
), pp.
3
11
.
11.
Jiao
,
J.
,
Zhang
,
Y.
, and
Helander
,
M. G.
, 2006, “
A Kansei Mining System for Affective Design
,”
Expert Syst. Appl.
,
30
(
4
), pp.
658
673
.
12.
Jiao
,
J.
, and
Zhang
,
Y.
, 2005, “
Product Portfolio Identification Based on Association Rule Mining
,”
Comput.-Aided Des.
0010-4485,
37
(
2
), pp.
149
172
.
13.
Urban
,
G. L.
, and
Hauser
,
J. R.
, 1993,
Design and Marketing of New Products
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Thurston
,
D. L.
, and
Locascio
,
A.
, 1994, “
Decision Theory for Design Economics
,”
Eng. Econ.
0013-791X,
40
(
1
), pp.
41
71
.
15.
Barone
,
S.
,
Lombardo
,
A.
, and
Tarantino
,
P.
, 2007, “
A Weighted Logistic Regression for Conjoint Analysis and Kansei Engineering
,”
Qual. Reliab. Eng. Int.
,
23
(
6
), pp.
689
706
.
16.
Beckwith
,
N. E.
, and
Lehmann
,
D. R.
, 1975, “
The Importance of Halo Effects in Multi-Attribute Attitude Models
,”
J. Mark. Res.
0022-2437,
12
(
3
), pp.
265
275
.
17.
Larose
,
D. T.
, 2005,
Discovering Knowledge in Data: An Introduction to Data Mining
,
Wiley
,
Hoboken, NJ
.
18.
Webb
,
G. I.
, and
Zhang
,
S.
, 2005, “
K-Optimal Rule Discovery
,”
Data Min. Knowl. Discov.
1384-5810,
10
(
1
), pp.
39
79
.
19.
Li
,
J.
, and
Cercone
,
N.
, 2006, “
Introducing a Rule Importance Measure
,”
Transactions on Rough Sets
,
5
, pp.
167
189
.
20.
Nagamachi
,
M.
,
Okazaki
,
Y.
, and
Ishikawa
,
M.
, 2006, “
Kansei Engineering and Application of the Rough Sets Model
,”
Journal of Systems and Control Engineering
,
220
(
8
), pp.
763
768
.
21.
Green
,
P.
,
Carroll
,
J.
, and
Goldberg
,
S.
, 1981, “
A General Approach to Product Design Optimization via Conjoint Analysis
,”
J. Marketing
0022-2429,
45
, pp.
17
35
.
22.
Jiao
,
J.
,
Xu
,
Q.
,
Du
,
J.
,
Zhang
,
Y.
,
Helander
,
M. G.
,
Khalid
,
H. M.
,
Helo
,
P.
, and
Ni
,
C.
, 2007, “
Analytical Affective Design With Ambient Intelligence for Mass Customization and Personalization
,”
Int. J. Flex. Manuf. Syst.
,
19
, pp.
570
595
.
23.
Zhang
,
L.
,
Helander
,
M.
, and
Drury
,
C.
, 1996, “
Identifying Factors of Comfort and Discomfort in Sitting
,”
Hum. Factors
0018-7208,
38
, pp.
377
389
.
24.
Lanzotti
,
A.
, and
Tarantino
,
P.
, 2008, “
Kansei Engineering Approach for Total Quality Design and Continuous Innovation
,”
The TQM Journal
,
20
(
4
), pp.
324
337
.
25.
Delin
,
J.
,
Sharoff
,
S.
,
Barnes
,
C. J.
, and
Lillford
,
S. P.
, 2007, “
Linguistic Support for Concept Selection Decisions
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
21
, pp.
123
135
.
26.
Hauge
,
P. L.
, and
Stauffer
,
L. A.
, 1993, “
ELK: A Method for Eliciting Knowledge From Customers
,”
Design and Methodology
,
53
, pp.
73
81
.
27.
Tseng
,
M. M.
, and
Jiao
,
J.
, 1998, “
Computer-Aided Requirement Management for Product Definition: A Methodology and Implementation
,”
Concurr. Eng. Res. Appl.
1063-293X,
6
(
2
), pp.
145
160
.
28.
Ishihara
,
S.
, 2001, “
Kansei Engineering Procedure and Statistical Analysis
,”
International Conference on Affective Human Factors Design
, Singapore, Jun. 27–29.
29.
Kim
,
J.
,
Lee
,
J.
, and
Choi
,
D.
, 2003, “
Designing Emotionally Evocative Homepages: An Empirical Study of the Quantitative Relations Between Design Factors and Emotional Dimensions
,”
Int. J. Hum.-Comput. Stud.
1071-5819,
59
, pp.
899
940
.
30.
Arakawa
,
M.
,
Shiraki
,
W.
, and
Ishikawa
,
H.
, 1999, “
Kansei Design Using Genetic Algorithms
,”
Proceedings of the IEEE International Conference Systems, Man, and Cybernetics
, Vol.
6
, pp.
284
289
.
31.
Schütte
,
S.
, 2005, “
Engineering Emotional Values in Product Design: Kansei Engineering in Development
,” Ph.D. thesis, Linköping University, Linköping, Sweden.
32.
Zhai
,
L. -Y.
,
Khoo
,
L. -P.
, and
Zhong
,
Z. -W.
, 2009, “
A Dominance-Based Rough Set Approach to Kansei Engineering in Product Development
,”
Expert Syst. Appl.
,
36
(
1
), pp.
393
402
.
33.
Tsuchiya
,
T.
,
Maeda
,
T.
,
Matsubara
,
Y.
, and
Nagamachi
,
M.
, 1996, “
A Fuzzy Rule Induction Method Using Genetic Algorithm
,”
Int. J. Ind. Ergonom.
0169-8141,
18
(
2–3
), pp.
135
145
.
34.
Matsubara
,
Y.
, and
Nagamachi
,
M.
, 1997, “
Hybrid Kansei Engineering System and Design Support
,”
Int. J. Ind. Ergonom.
0169-8141,
19
(
2
), pp.
81
92
.
35.
Turksen
,
I. B.
, and
Willson
,
I. A.
, 1992, “
Customer Preferences Models: Fuzzy Theory Approach
,”
Proc. SPIE
0277-786X,
2061
, pp.
203
211
.
36.
Zhou
,
F.
, 2010,“
Affective Cognitive Design of Product Ecosystems for User Experience
,” Ph.D. thesis, Nanyang Technological University, Singapore.
37.
Pawlak
,
Z.
, 1991,
Rough Sets: Theoretical Aspects of Reasoning About Data
,
Kluwer Academic
,
Boston
.
38.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
, 2001,
The Elements of Statistical Learning: Data Mining, Inference and Prediction
,
Springer
,
New York
.
39.
Osgood
,
C. E.
,
May
,
W. H.
, and
Miron
,
M.
, 1975,
Cross-Cultural Universals of Affective Meaning
,
University of Illinois Press
,
Chicago
.
40.
Webb
,
G. I.
, 2003, “
Association Rules
,”
The Handbook of Data Mining
,
N.
Ye
, ed.,
Erlbaum
,
Hillsdale, NJ
.
41.
Bazan
,
J. G.
, and
Szczuka
,
M.
, 2005, “
The Rough Set Exploration System
,”
Transaction on Rough Set III, LNCS
,
J. F.
Peters
and
A.
Skowron
, eds.,
Springer-Verlag
,
Berlin
, pp.
37
56
.
42.
Todorovski
,
L.
,
Flach
,
P.
, and
Lavrac
,
N.
, 2000, “
Predictive Performance of Weighted Relative Accuracy
,”
Fourth European Conference on Principles of Data Mining and Knowledge Discovery
, Lyon, France, Sept. 13–16.
43.
Li
,
J.
, 2007, “
Rough Set Based Rule Evaluations and Their Applications
,” Ph.D. thesis, University of Waterloo, Waterloo, ON.
44.
Hosmer
,
D. W.
, and
Lemeshow
,
S.
, 2000,
Applied Logistic Regression
,
Wiley
,
New York
.
45.
Nair
,
S. K.
,
Thakur
,
L. S.
, and
Wen
,
K.
, 1995, “
Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics
,”
Manage. Sci.
0025-1909,
41
, pp.
767
785
.
46.
Becker
,
B.
,
Kohavi
,
R.
, and
Sommerfield
,
D.
, 1997,“
Visualizing the Simple Bayesian Classifier
,”
KDD Workshop on Issues in the Integration of Data Mining and Data Visualization
, Aug. 14–17.
47.
Ingarden
,
R.
, 1985,
Selected Papers in Aesthetics
,
Catholic University of America Press
,
Washington, DC
.
You do not currently have access to this content.