Computing isomorphisms and embeddings of finite fields
HTML articles powered by AMS MathViewer
- by Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori and Éric Schost;
- Math. Comp. 88 (2019), 1391-1426
- DOI: https://doi.org/10.1090/mcom/3363
- Published electronically: June 19, 2018
- HTML | PDF
Abstract:
Let $\mathbb {F}_q$ be a finite field. Given two irreducible polynomials $f,g$ over $\mathbb {F}_q$, with $\deg f$ dividing $\deg g$, the finite field embedding problem asks to compute an explicit description of a field embedding of $\mathbb {F}_q[X]/f(X)$ into $\mathbb {F}_q[Y]/g(Y)$. When $\deg f = \deg g$, this is also known as the isomorphism problem.
This problem, a special instance of polynomial factorization, plays a central role in computer algebra software. We review previous algorithms, due to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and generalizations. Our detailed complexity analysis shows that our newly proposed variants are at least as efficient as previously known algorithms, and in many cases significantly better.
We also implement most of the presented algorithms, compare them with the state of the art computer algebra software, and make the code available as an open source. Our experiments show that our new variants consistently outperform available software.
References
- L. M. Adleman and H. W. Lenstra. Finding irreducible polynomials over finite fields. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 350–355, New York, NY, USA, 1986. ACM.
- Bill Allombert, Explicit computation of isomorphisms between finite fields, Finite Fields Appl. 8 (2002), no. 3, 332–342. MR 1910396, DOI 10.1006/ffta.2001.0344
- Bill Allombert, Explicit computation of isomorphisms between finite fields, Revised version. https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps, 2002.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Wieb Bosma, John Cannon, and Allan Steel, Lattices of compatibly embedded finite fields, J. Symbolic Comput. 24 (1997), no. 3-4, 351–369. Computational algebra and number theory (London, 1993). MR 1484485, DOI 10.1006/jsco.1997.0138
- R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach. 25 (1978), no. 4, 581–595. MR 520733, DOI 10.1145/322092.322099
- Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric Schost, Computing isomorphisms and embeddings of finite fields (extended version), arXiv preprint arXiv:1705.01221, 2017.
- David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Inform. 28 (1991), no. 7, 693–701. MR 1129288, DOI 10.1007/BF01178683
- David G. Cantor and Hans Zassenhaus, A new algorithm for factoring polynomials over finite fields, Math. Comp. 36 (1981), no. 154, 587–592. MR 606517, DOI 10.1090/S0025-5718-1981-0606517-5
- Wouter Castryck and Hendrik Hubrechts, The distribution of the number of points modulo an integer on elliptic curves over finite fields, Ramanujan J. 30 (2013), no. 2, 223–242. MR 3017927, DOI 10.1007/s11139-012-9444-0
- Jean-Marc Couveignes and Reynald Lercier, Galois invariant smoothness basis, Algebraic geometry and its applications, Ser. Number Theory Appl., vol. 5, World Sci. Publ., Hackensack, NJ, 2008, pp. 142–167. MR 2484053, DOI 10.1142/9789812793430_{0}008
- Jean-Marc Couveignes and Reynald Lercier, Fast construction of irreducible polynomials over finite fields, Israel J. Math. 194 (2013), no. 1, 77–105. MR 3047063, DOI 10.1007/s11856-012-0070-8
- Luca De Feo, Javad Doliskani, and Éric Schost, Fast algorithms for $\ell$-adic towers over finite fields, ISSAC 2013—Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2013, pp. 165–172. MR 3206354, DOI 10.1145/2465506.2465956
- Luca De Feo, Javad Doliskani, and Éric Schost, Fast arithmetic for the algebraic closure of finite fields, ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 122–129. MR 3239917, DOI 10.1145/2608628.2608672
- The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.5.rc0), 2016. http://www.sagemath.org.
- Javad Doliskani and Éric Schost, Taking roots over high extensions of finite fields, Math. Comp. 83 (2014), no. 285, 435–446. MR 3120598, DOI 10.1090/S0025-5718-2013-02715-9
- Sandra Feisel, Joachim von zur Gathen, and M. Amin Shokrollahi, Normal bases via general Gauss periods, Math. Comp. 68 (1999), no. 225, 271–290. MR 1484903, DOI 10.1090/S0025-5718-99-00988-6
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 197380
- William B. Hart, Fast library for number theory: an introduction, Mathematical software—ICMS 2010, Lecture Notes in Comput. Sci., vol. 6327, Springer, Berlin, 2010, pp. 88–91. MR 3663175, DOI 10.1007/978-3-642-15582-6_{1}8
- David Harvey, Faster polynomial multiplication via multipoint Kronecker substitution, J. Symbolic Comput. 44 (2009), no. 10, 1502–1510. MR 2543433, DOI 10.1016/j.jsc.2009.05.004
- D. R. Heath-Brown, Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265–338. MR 1143227, DOI 10.1112/plms/s3-64.2.265
- Erich Kaltofen, Computer algebra algorithms, Annual review of computer science, Vol. 2, Annual Reviews, Palo Alto, CA, 1987, pp. 91–118. MR 921493
- Erich Kaltofen and Victor Shoup, Fast polynomial factorization over high algebraic extensions of finite fields, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York, 1997, pp. 184–188. MR 1809986, DOI 10.1145/258726.258777
- Erich Kaltofen and Victor Shoup, Subquadratic-time factoring of polynomials over finite fields, Math. Comp. 67 (1998), no. 223, 1179–1197. MR 1459389, DOI 10.1090/S0025-5718-98-00944-2
- Kiran S. Kedlaya and Christopher Umans, Fast polynomial factorization and modular composition, SIAM J. Comput. 40 (2011), no. 6, 1767–1802. MR 2863194, DOI 10.1137/08073408X
- E. E. Kummer, Mémoire sur la théorie des nombres complexes composés de racines de l’unité et de nombres entiers, Journal de Mathématiques Pures et Appliquées, (1851), 377–498.
- E. E. Kummer, Über die Divisoren gewisser Formen der Zahlen, welche aus der Theorie der Kreistheilung entstehen, J. Reine Angew. Math. 30 (1846), 107–116 (German). MR 1578458, DOI 10.1515/crll.1846.30.107
- E. E. Kummer, Sur les nombres complexes qui sont formés avec les nombres entiers réels et les racines de l’unité, Journal de Mathématiques Pures et Appliquées, (1847), 185–212.
- E. E. Kummer, Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren, J. Reine Angew. Math. 35 (1847), 327–367 (German). MR 1578599, DOI 10.1515/crll.1847.35.327
- E. E. Kummer, Zur Theorie der complexen Zahlen, J. Reine Angew. Math. 35 (1847), 319–326 (German). MR 1578598, DOI 10.1515/crll.1847.35.319
- E. E. Kummer, Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke, J. Reine Angew. Math. 50 (1855), 212–232 (German). MR 1578935, DOI 10.1515/crll.1855.50.212
- E. E. Kummer, Über die den Gaußschen Perioden der Kreistheilung entsprechenden Congruenzwurzeln, J. Reine Angew. Math. 53 (1857), 142–148 (German). MR 1578992, DOI 10.1515/crll.1857.53.142
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- François Le Gall, Powers of tensors and fast matrix multiplication, ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 296–303. MR 3239939, DOI 10.1145/2608628.2608664
- H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649–673. MR 916721, DOI 10.2307/1971363
- H. W. Lenstra Jr., Finding isomorphisms between finite fields, Math. Comp. 56 (1991), no. 193, 329–347. MR 1052099, DOI 10.1090/S0025-5718-1991-1052099-2
- Reynald Lercier and Thomas Sirvent, On Elkies subgroups of $l$-torsion points in elliptic curves defined over a finite field, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 783–797 (English, with English and French summaries). MR 2523317
- Preda Mihăilescu and Victor Vuletescu, Elliptic Gauss sums and applications to point counting, J. Symbolic Comput. 45 (2010), no. 8, 825–836. MR 2657666, DOI 10.1016/j.jsc.2010.01.004
- Robert T. Moenck, Another polynomial homomorphism, Acta Informat. 6 (1976), no. 2, 153–169. MR 408306, DOI 10.1007/bf00268498
- Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), no. 177, 243–264. MR 866113, DOI 10.1090/S0025-5718-1987-0866113-7
- Gary L. Mullen (ed.), Handbook of finite fields, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2013. MR 3087321, DOI 10.1201/b15006
- A. K. Narayanan, Fast computation of isomorphisms between finite fields using elliptic curves, arXiv preprint arXiv:1604.03072, 2016.
- Emmy Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math. 167 (1932), 147–152 (German). MR 1581331, DOI 10.1515/crll.1932.167.147
- Cyril Pascal and Éric Schost, Change of order for bivariate triangular sets, ISSAC 2006, ACM, New York, 2006, pp. 277–284. MR 2289131, DOI 10.1145/1145768.1145814
- Michael S. Paterson and Larry J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput. 2 (1973), 60–66. MR 314238, DOI 10.1137/0202007
- R. G. E. Pinch, Recognising elements of finite fields, Cryptography and coding, II (Cirencester, 1989) Inst. Math. Appl. Conf. Ser. New Ser., vol. 33, Oxford Univ. Press, New York, 1992, pp. 193–197. MR 1165738
- Adrien Poteaux and Éric Schost, Modular composition modulo triangular sets and applications, Comput. Complexity 22 (2013), no. 3, 463–516. MR 3090784, DOI 10.1007/s00037-013-0063-y
- E. M. Rains, Efficient computation of isomorphisms between finite fields, personal communication, 1996.
- René Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 219–254. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 1413578
- Victor Shoup, New algorithms for finding irreducible polynomials over finite fields, Math. Comp. 54 (1990), no. 189, 435–447. MR 993933, DOI 10.1090/S0025-5718-1990-0993933-0
- Victor Shoup, Fast construction of irreducible polynomials over finite fields, Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993) ACM, New York, 1993, pp. 484–492. MR 1213261
- Victor Shoup, Fast construction of irreducible polynomials over finite fields, J. Symbolic Comput. 17 (1994), no. 5, 371–391. MR 1289997, DOI 10.1006/jsco.1994.1025
- Victor Shoup, Efficient computation of minimal polynomials in algebraic extensions of finite fields, Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), ACM, New York, 1999, pp. 53–58. MR 1802067, DOI 10.1145/309831.309859
- The PARI Group, Bordeaux. PARI/GP, version 2.8.0, 2016.
- Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, Cambridge University Press, New York, 1999. MR 1689167
- Joachim von zur Gathen and Victor Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity 2 (1992), no. 3, 187–224. MR 1220071, DOI 10.1007/BF01272074
- H. C. Williams, A $p+1$ method of factoring, Math. Comp. 39 (1982), no. 159, 225–234. MR 658227, DOI 10.1090/S0025-5718-1982-0658227-7
Bibliographic Information
- Ludovic Brieulle
- Affiliation: Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay
- Email: l.brieulle@gmail.com
- Luca De Feo
- Affiliation: Laboratoire de Mathématiques de Versailles, UVSQ, CNRS & Inria, Université Paris-Saclay
- MR Author ID: 923705
- Email: luca.de-feo@uvsq.fr
- Javad Doliskani
- Affiliation: Institute for Quantum Computing, University of Waterloo
- MR Author ID: 1041035
- Email: javad.doliskani@uwaterloo.ca
- Jean-Pierre Flori
- Affiliation: Agence nationale de la sécurité des systèmes d’information
- MR Author ID: 962856
- Email: jean-pierre.flori@ssi.gouv.fr
- Éric Schost
- Affiliation: Cheriton School of Computer Science, University of Waterloo
- MR Author ID: 672551
- Email: eschost@uwaterloo.ca
- Received by editor(s): May 5, 2017
- Received by editor(s) in revised form: July 3, 2017, and December 18, 2017
- Published electronically: June 19, 2018
- © Copyright 2018 Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric Schost
- Journal: Math. Comp. 88 (2019), 1391-1426
- MSC (2010): Primary 13P05, 68W30
- DOI: https://doi.org/10.1090/mcom/3363
- MathSciNet review: 3904150