iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1038/NATURE11577
Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength

Abstract

Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit1,2,3,4,5. Electron spins in III–V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation6,7 and photon emission8,9, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement10. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates11,12, the present technique advances the III–V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Level structure of quantum dot and spin manipulation.
Figure 2: Ultrafast conversion to 1,560 nm.
Figure 3: Quantum-dot manipulation scheme for spin–photon entanglement verification.
Figure 4: Spin–photon entanglement verification.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  CAS  Google Scholar 

  3. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

    Article  ADS  Google Scholar 

  9. Moreau, E. et al. A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. Physica E 13, 418–422 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  11. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Stute, A. et al. Tunable ion-photon entanglement in an optical cavity. Nature 485, 482–485 (2012)

    Article  ADS  CAS  Google Scholar 

  17. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011)

    Article  ADS  CAS  Google Scholar 

  20. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Pelc, J. S., Langrock, C., Zhang, Q. & Fejer, M. M. Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. Opt. Lett. 35, 2804–2806 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002)

    Article  ADS  Google Scholar 

  25. Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007)

    Article  ADS  Google Scholar 

  26. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Scully, M. O. & Drühl, K. Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982)

    Article  ADS  CAS  Google Scholar 

  28. Tanner, M. G. et al. Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl. Phys. Lett. 96, 221109 (2010)

    Article  ADS  Google Scholar 

  29. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  30. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Naturehttp://dx.doi.org/10.1038/nature11573 (this issue)

Download references

Acknowledgements

We thank D. Press, T. Ladd, D. Sleiter, S. Tawfeeq, S. Rumley, D. Werthimer, A. Langman, C. Langrock, Q. Zhang, N. Namekata, S. Inoue, T. Inagaki and H. Kosaka for discussions, comments and technical assistance. We thank V. Zwiller and S. Dorenbos (TU Delft) for providing the superconducting detector samples used. This work was supported by the JSPS through its FIRST programme, NICT, NSF CCR-08 29694, NIST 60NANB9D9170, Special Coordination Funds for Promoting Science and Technology, and the State of Bavaria. J.S.P. and M.M.F. were supported by the United States AFOSR (grant FA9550-12-1-0110). Other authors were supported as follows: K.D.G. by a Herb and Jane Dwight Stanford Graduate Fellowship; P.L.M. by a David Cheriton Stanford Graduate Fellowship; J.S.P. by a Robert N. Noyce Stanford Graduate Fellowship; C.M.N. by a SU2P Entrepreneurial Fellowship; and R.H.H. by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.M., C.S., M.K. and S.H. grew and fabricated the samples. K.D.G. and Y.Y. designed the experiment. K.D.G., J.S.P., L.Y., P.L.M., C.M.N. and N.Y.K. performed the optical experiments. J.S.P. designed and fabricated the PPLN waveguides. J.S.P. and L.Y. developed the 2.2-µm set-up and the 1,560-nm filtering design. C.M.N. and R.H.H. packaged, characterized and implemented the SNSPD detectors. Y.Y., M.M.F., E.A. and A.F. guided the work. K.D.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Kristiaan De Greve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-6, Supplementary Figures 1-11 and additional references. (PDF 613 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Greve, K., Yu, L., McMahon, P. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012). https://doi.org/10.1038/nature11577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing