Abstract
Class prediction and feature selection is keyin the context of diagnostic applications ofDNA microarrays. Microarray data is noisy andtypically composed of a low number of samplesand a large number of genes. Perceptrons canconstitute an efficient tool for accurateclassification of microarray data.Nevertheless, the large input layers necessaryfor the direct application of perceptrons andthe low samples available for the trainingprocess hamper its use. Two strategies can betaken for an optimal use of a perceptron with afavourable balance between samples for trainingand the size of the input layer: (a) reducingthe dimensionality of the data set fromthousands to no more than one hundred, highlyinformative average values, and using theweights of the perceptron for feature selectionor (b) using a selection of only few genesthat produce an optimal classification with theperceptron. In this case, feature selection iscarried out first. Obviously, a combinedapproach is also possible. In this manuscriptwe explore and compare both alternatives. Westudy the informative contents of the data atdifferent levels of compression with a veryefficient clustering algorithm (Self OrganizingTree Algorithm). We show how a simple geneticalgorithm selects a subset of gene expressionvalues with 100% accuracy in theclassification of samples with maximumefficiency. Finally, the importance ofdimensionality reduction is discussed in lightof its capacity for reducing noise andredundancies in microarray data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J. Jr, Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O. & Staudt, L. M. (2000). Distinct Types of Diffuse Large B-cell Lymphoma Identified by Gene Expression Profiling. Nature 403: 503–11.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. & Levine, A. J. (1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed with Oligonucleotide Arrays. Proc. Natl. Acad. Sci. USA. 96: 6745–6750.
Brown, P. O. & Botstein, D. (1999). Exploring the New World of the Genome with DNA Microarrays. Nature Biotechnol. 14: 1675–1680.
Califano, A., Stolovitzky, G. & Tu, Y. (2000). Analysis of Gene Expression Microarrays for Phenotype Classification. Proc. Intell. Syst. Mol. Biol. 8: 75–85.
Cummings, C. A. (2001). Application of SOTA, a Growing Neural Network Algorithm, to Gene Expression Profile Clustering. Briefings in Bioinformatics 2: 402–404.
Dopazo, J. & Carazo, J. M. (1997). Phylogenetic Reconstruction Using a Growing Neural Network that Adopts the Topology of a Phylogenetic Tree. J. Mol. Evol. 44: 226–233.
Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. & Haussler, D. (2000). Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16: 906–914.
Getz, G., Levine, E. & Domany, E. (2000). Coupled Two-way Clustering Analysis of Gene Microarray Data. Proc. Natl. Acad. Sci. USA 97: 12079–12084.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. & Lander, E. S. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286: 531–537.
Herrero, J., Valencia, A. & Dopazo, J. (2001). A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns. Bioinformatics. 17: 126–136.
Herrero, J., Al-Shahrouv, F., Diaz-Uriarte, R., Mateos, A., Vapuerizas, J. M., Santoys, J. & Dopazo, J. (2003). GEPAS, a Web-Based Resource for Microarray Gene Expression Data Analysis. Nucl. Acids. Res. 31: 3461–3467.
Khan, J. Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu C. R., Peterson, C. & Meltzer, P. S. (2001). Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nature Med. 7: 673–579.
Li, L., Weinberg, C. R., Darden, T. A. & Pedersen, L. G. (2001). Gene Selection for Sample Classification Based on Gene Expression Data: Study of Sensitivity to Choice of Parameters of the GA/KNN Method. Bioinformatics 17: 1131–1142.
Mateos, A., Herrero, J., Tamames, J. & Dopazo, J. (2002). Supervised Neural Networks for Clustering Conditions in DNA Array Data After Reducing Noise by Clustering Gene Expression Profiles. Microarray Data Analysis II, 91–103. Kluwer Academic Publisher.
Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag.
Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C. T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K.W., Norton, A., T. Lister, A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C. & Golub, T. R. (2002). Diffuse Large B-cell Lymphoma Outcome Prediction by Gene-Expression Profiling and Supervised Machine Learning. Nature Medicine 8: 68–74.
van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., Peterse, L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R. & Friend, S. H. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature 415: 530–536.
Wu, C. H. & McLarty, J.W. (2000). Neural Networks and Genome Informatics. Ed. Konopka. Elsevier.
Yeung, K. Y. & Ruzzo, W. L. (2001). Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics 17: 763–774.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karzynski, M., Mateos, Á., Herrero, J. et al. Using a Genetic Algorithm and a Perceptron for Feature Selection and Supervised Class Learning in DNA Microarray Data. Artificial Intelligence Review 20, 39–51 (2003). https://doi.org/10.1023/A:1026032530166
Issue Date:
DOI: https://doi.org/10.1023/A:1026032530166