Abstract
Let p be an odd prime and \(\zeta _p\) be a primitive p th root of unity over \({\mathbb{Q}}\). The Galois group G of \(K: = {\mathbb{Q}}(\zeta _p )\) over \({\mathbb{Q}}\) is a cyclic group of order p-1. The integral group ring \({\mathbb{Z}}\)[G] contains the Stickelberger ideal S p which annihilates the ideal class group of K. In this paper we investigate the parameters of cyclic codes S p (q) obtained as reductions of S p modulo primes q which we call Stickelberger codes. In particular, we show that the dimension of S p (p) is related to the index of irregularity of p, i.e., the number of Bernoulli numbers B 2k , \(1 \leqslant k \leqslant (p - 3)/2\), which are divisible by p. We then develop methods to compute the generator polynomial of S p (p). This gives rise to anew algorithm for the computation of the index of irregularity of a prime. As an application we show that 20,001,301 is regular. This significantly improves a previous record of 8,388,019 on the largest explicitly known regular prime.
Similar content being viewed by others
References
L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Information and Control, Vol. 20 (1972) pp. 158–175.
Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York (1966).
J. P. Buhler, R. Crandall and R. W. Sompolski, Irregular primes to one million, Math. Comp., Vol. 59 (1992) pp. 717–722.
J. P. Buhler, R. E. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp., Vol. 61 (1993) pp. 151–153.
L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc., Vol. 6 (1955) pp. 265–269.
M. Clausen and U. Baum, Fast Fourier Transforms., BI Wissenschaftsverlag, Mannheim (1993).
H. Davenport and H. Hasse Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen. Journal f ¨ ur die reine und angewandte Mathematik, Vol. 172 (1935) pp. 151–182.
M. Eichler, Eine Bemerkung zur Fermatschen Vermutung, Acta Arithmetica, Vol. 11 (1965) pp. 129–131.
G. Fung, A. Granville and H. C. Williams, Computation of the first factor of the class number of cyclotomic fields, J. Number Theory, Vol. 42 (1992) pp. 297–312.
G. van der Geer, R. Schoof and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. of Comp., Vol. 58 (1992) pp. 781–792.
V. Jha, Faster computation of irregular pairs corresponding to an odd prime, J. Indian Math. Soc., Vol. 59 (1993) pp. 149–152.
G. Lachaud, Artin-Schreier curves, exponential sums, and the Carlitz-Uchiyama bound for geometric codes, J. Number Theory, Vol. 39 (1991) pp. 18–40.
D.H. Lehmer, Prime factors of cyclotomic class numbers, Math. Comp., Vol. 31 (1977) pp. 599–607.
H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. math. Sem. Univ. Hamburg, Vol. 22 (1958) pp. 131–140.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, New York, Oxford (1977).
R. J. McEliece and H. C. Rumsey, Euler products, cyclotomy, and coding, J. Number Theory, Vol. 4 (1972) pp. 302–311.
R. Ernvall and T. Metsänkylä, Cyclotomic invariants for primes to one million, Math. Comp., Vol. 59 (1992) pp. 249–250.
A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp., Vol. 50 (1988) pp. 619–632.
A. Sch¨ onhage, A. F. W. Grotefeld, E. Vetter, Fast Algorithms: A Multitape Turing Machine Implementation. BI Wissenschaftsverlag, Mannheim (1994).
L. Stickelberger, ¨ Uber eine Verallgemeinerung der Kreistheilung, Math. Ann., Vol. 37 (1890) pp. 321–367.
V. Strassen, Algebraic complexity theory, In Handbook of Theoretical Computer Science, Vol. A, Edited by J. Leeuwen, pp. 635–672, (1990).
B. L. Van der Waerden, Algebra I. Springer Verlag, Berlin, Eighth Edition (1971).
L. C. Washington, Introduction to Cyclotomic Fields. Springer Verlag (1982).
S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp., Vol. 32 (1978) pp. 583–591.
S. S. Wagstaff, Jr. and J. W. Tanner, New congruences for the Bernoulli numbers, Math. Comp., Vol. 48 (1987) pp. 341–350.
J. Wolfmann, New bounds on cyclic codes from algebraic curves, LNCS, Vol. 388 (1989) pp. 47–62.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Shokrollahi, M.A. Stickelberger Codes. Designs, Codes and Cryptography 9, 203–213 (1996). https://doi.org/10.1023/A:1018022215278
Issue Date:
DOI: https://doi.org/10.1023/A:1018022215278