iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1023/A:1018022215278
Stickelberger Codes | Designs, Codes and Cryptography Skip to main content
Log in

Stickelberger Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let p be an odd prime and \(\zeta _p\) be a primitive p th root of unity over \({\mathbb{Q}}\). The Galois group G of \(K: = {\mathbb{Q}}(\zeta _p )\) over \({\mathbb{Q}}\) is a cyclic group of order p-1. The integral group ring \({\mathbb{Z}}\)[G] contains the Stickelberger ideal S p which annihilates the ideal class group of K. In this paper we investigate the parameters of cyclic codes S p (q) obtained as reductions of S p modulo primes q which we call Stickelberger codes. In particular, we show that the dimension of S p (p) is related to the index of irregularity of p, i.e., the number of Bernoulli numbers B 2k , \(1 \leqslant k \leqslant (p - 3)/2\), which are divisible by p. We then develop methods to compute the generator polynomial of S p (p). This gives rise to anew algorithm for the computation of the index of irregularity of a prime. As an application we show that 20,001,301 is regular. This significantly improves a previous record of 8,388,019 on the largest explicitly known regular prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Information and Control, Vol. 20 (1972) pp. 158–175.

    Google Scholar 

  2. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York (1966).

    Google Scholar 

  3. J. P. Buhler, R. Crandall and R. W. Sompolski, Irregular primes to one million, Math. Comp., Vol. 59 (1992) pp. 717–722.

    Google Scholar 

  4. J. P. Buhler, R. E. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp., Vol. 61 (1993) pp. 151–153.

    Google Scholar 

  5. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc., Vol. 6 (1955) pp. 265–269.

    Google Scholar 

  6. M. Clausen and U. Baum, Fast Fourier Transforms., BI Wissenschaftsverlag, Mannheim (1993).

    Google Scholar 

  7. H. Davenport and H. Hasse Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen. Journal f ¨ ur die reine und angewandte Mathematik, Vol. 172 (1935) pp. 151–182.

    Google Scholar 

  8. M. Eichler, Eine Bemerkung zur Fermatschen Vermutung, Acta Arithmetica, Vol. 11 (1965) pp. 129–131.

    Google Scholar 

  9. G. Fung, A. Granville and H. C. Williams, Computation of the first factor of the class number of cyclotomic fields, J. Number Theory, Vol. 42 (1992) pp. 297–312.

    Google Scholar 

  10. G. van der Geer, R. Schoof and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. of Comp., Vol. 58 (1992) pp. 781–792.

    Google Scholar 

  11. V. Jha, Faster computation of irregular pairs corresponding to an odd prime, J. Indian Math. Soc., Vol. 59 (1993) pp. 149–152.

    Google Scholar 

  12. G. Lachaud, Artin-Schreier curves, exponential sums, and the Carlitz-Uchiyama bound for geometric codes, J. Number Theory, Vol. 39 (1991) pp. 18–40.

    Google Scholar 

  13. D.H. Lehmer, Prime factors of cyclotomic class numbers, Math. Comp., Vol. 31 (1977) pp. 599–607.

    Google Scholar 

  14. H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. math. Sem. Univ. Hamburg, Vol. 22 (1958) pp. 131–140.

    Google Scholar 

  15. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, New York, Oxford (1977).

    Google Scholar 

  16. R. J. McEliece and H. C. Rumsey, Euler products, cyclotomy, and coding, J. Number Theory, Vol. 4 (1972) pp. 302–311.

    Google Scholar 

  17. R. Ernvall and T. Metsänkylä, Cyclotomic invariants for primes to one million, Math. Comp., Vol. 59 (1992) pp. 249–250.

    Google Scholar 

  18. A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp., Vol. 50 (1988) pp. 619–632.

    Google Scholar 

  19. A. Sch¨ onhage, A. F. W. Grotefeld, E. Vetter, Fast Algorithms: A Multitape Turing Machine Implementation. BI Wissenschaftsverlag, Mannheim (1994).

    Google Scholar 

  20. L. Stickelberger, ¨ Uber eine Verallgemeinerung der Kreistheilung, Math. Ann., Vol. 37 (1890) pp. 321–367.

    Google Scholar 

  21. V. Strassen, Algebraic complexity theory, In Handbook of Theoretical Computer Science, Vol. A, Edited by J. Leeuwen, pp. 635–672, (1990).

  22. B. L. Van der Waerden, Algebra I. Springer Verlag, Berlin, Eighth Edition (1971).

    Google Scholar 

  23. L. C. Washington, Introduction to Cyclotomic Fields. Springer Verlag (1982).

  24. S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp., Vol. 32 (1978) pp. 583–591.

    Google Scholar 

  25. S. S. Wagstaff, Jr. and J. W. Tanner, New congruences for the Bernoulli numbers, Math. Comp., Vol. 48 (1987) pp. 341–350.

    Google Scholar 

  26. J. Wolfmann, New bounds on cyclic codes from algebraic curves, LNCS, Vol. 388 (1989) pp. 47–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokrollahi, M.A. Stickelberger Codes. Designs, Codes and Cryptography 9, 203–213 (1996). https://doi.org/10.1023/A:1018022215278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018022215278

Navigation