iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1023/A:1013815310229
Multiclass LS-SVMs: Moderated Outputs and Coding-Decoding Schemes | Neural Processing Letters Skip to main content
Log in

Multiclass LS-SVMs: Moderated Outputs and Coding-Decoding Schemes

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A common way of solving the multiclass categorization problem is to reformulate the problem into a set of binary classification problems. Discriminative binary classifiers like, e.g., Support Vector Machines (SVMs), directly optimize the decision boundary with respect to a certain cost function. In a pragmatic and computationally simple approach, Least Squares SVMs (LS-SVMs) are inferred by minimizing a related regression least squares cost function. The moderated outputs of the binary classifiers are obtained in a second step within the evidence framework. In this paper, Bayes' rule is repeatedly applied to infer the posterior multiclass probabilities, using the moderated outputs of the binary plug-in classifiers and the prior multiclass probabilities. This Bayesian decoding motivates the use of loss function based decoding instead of Hamming decoding. For SVMs and LS-SVMs with linear kernel, experimental evidence suggests the use of one-versus-one coding. With a Radial Basis Function kernel one-versus-one and error correcting output codes yield the best performances, but simpler codings may still yield satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Allwein, E., Schapire, R. and Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers, Journal of Machine Learning Research, 1 (2000), 113–141.

    Article  MathSciNet  Google Scholar 

  2. Baudat, G. and Anouar, F.: Generalized discriminant analysis using a kernel approach, Neural Comput., 12 (2000), 2385–2404.

    Article  Google Scholar 

  3. Bishop,C. M.: Neural Networks for Pattern Recognition, Oxford University Press, 1995.

  4. Cawley, G. C.: MATLAB Support Vector Machine Toolbox (v0.54β), University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K., 2000.

    Google Scholar 

  5. Cristianini, N. and Shawe-Taylor, J.: An Introduction to Support Vector Machines, Cambridge University Press, 2000.

  6. Cortes, C. and Vapnik, V.: Support vector networks. Machine Learning, 20 (1995), 273–297.

    MATH  Google Scholar 

  7. Dietterich, T. G. and Bakiri, G.: Solving multiclass learning problems via error-correcting output codes, Journal of Artificial Intelligence Research, 2 (1995), 263–286.

    MATH  Google Scholar 

  8. Duda, R. O. and Hart, P. E.: Pattern Classification and Scene Analysis, John Wiley, New York, 1973.

    MATH  Google Scholar 

  9. Hastie, T., Tibshirani, R. and Buja, A.: Flexible discriminant analysis by optimal scoring, Journal of the American Statistical Association, 98 (1994), 1255–1270.

    Article  MathSciNet  Google Scholar 

  10. Kressel, U. H.-G.: Pairwise classification and support vector machines, In: B. Schölkopf, C. J. C. Burges and A. J. Smola (Eds.), Advances in Kernel Methods, Support Vector Learning, MIT Press,1999.

  11. Kwok, J. T.: The evidence framework applied to Support Vector Machines, IEEE Transactions on Neural Networks, 10 (2000), 1018–1031.

    Article  Google Scholar 

  12. MacKay, D. J. C.: Probable networks and plausible predictions-A review of practical Bayesian methods for supervised neural networks, Network: Computation in Neural Systems, 6 (1995), 469–505.

    Article  MATH  Google Scholar 

  13. Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and Müller, K.-R.: Fisher Discriminant Analysis with Kernels, In: Y.-H. Hu, J. Larsen, E. Wilson & S. Douglas (Eds.), Proc. Neural Networks for Signal Processing IX, IEEE, pp. 41–48, 1999.

  14. Platt, J. C., Cristianini, N. and Shawe-Taylor, J.: Large margin DAGs for multiclass classification, In: S. A. Solla, T. K. Leen and K.-R. Muller (Eds.), Advances in Neural Information Processing Systems, 12, MIT Press, 2000.

  15. Saunders, C., Gammerman, A. and Vovk, V.: Ridge regression learning algorithm in dual variables, In Proc. 15th Int. Conf. on Machine Learning ICML'98, Morgan Kaufmann, pp. 515–521, 1998.

  16. Sejnowski, T. J. and Rosenberg, C. R.: Parallel networks that learn to pronounce english text, Journal of Complex Systems, 1 (1987), 145–168.

    MATH  Google Scholar 

  17. Suykens, J. A. K. and Vandewalle, J.: Least Squares Support Vector Machine Classifiers, Neural Processing Letters, 9 (1999), 293–300.

    Article  MathSciNet  Google Scholar 

  18. Suykens, J. A. K. and Vandewalle, J.: Multiclass Least Squares Support Vector Machines, In: Proc. International Joint Conference on Neural Networks (IJCNN'99), Washington DC, 1999.

  19. Utschick, W.: A regularization method for non-trivial codes in polychotomous classification, International Journal of Pattern Recognition and Artificial Intelligence, 12 (1998), 453–474.

    Article  Google Scholar 

  20. Van Gestel, T., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., De Moor, B. and Vandewalle, J.: A Bayesian Framework for Least Squares Support Vector Machine Classifiers, Gaussian Processes and Kernel Fisher Discriminant Analysis. Neural Computation, in press.

  21. Van Gestel, T., Suykens, J. A. K., Baestaens, D.-E., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B. and Vandewalle, J.: Predicting financial time series using Least Squares Support Vector Machines within the evidence framework, IEEE Transactions on Neural Networks, (Special Issue on Financial Engineering), 12 (2001), 809–821.

    Article  Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory, John Wiley, New York, 1998.

    MATH  Google Scholar 

  23. Williams, C. K. I.: Prediction with gaussian processes: from linear regression to linear prediction and beyond, In: M.I. Jordan (Ed.), Learning and Inference in Graphical Models, Kluwer Academic Press, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gestel, T., Suykens, J.A.K., Lanckriet, G. et al. Multiclass LS-SVMs: Moderated Outputs and Coding-Decoding Schemes. Neural Processing Letters 15, 45–58 (2002). https://doi.org/10.1023/A:1013815310229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013815310229

Navigation