Abstract
In this paper, some local and parallel discretizations and adaptive finite element algorithms are proposed and analyzed for nonlinear elliptic boundary value problems in both two and three dimensions. The main technique is to use a standard finite element discretization on a coarse grid to approximate low frequencies and then to apply some linearized discretization on a fine grid to correct the resulted residual (which contains mostly high frequencies) by some local/parallel procedures. The theoretical tools for analyzing these methods are some local a priori and a posteriori error estimates for finite element solutions on general shape-regular grids that are also obtained in this paper.
Similar content being viewed by others
References
R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993) 23–50.
E. Allgower, K. Böhmer, F. Portra and W. Rheinboldt, A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal. 23 (1986) 160–169.
O. Axelsson and W. Layton, A two-level discretization of nonlinear boundary value problems, SIAM J. Numer. Anal. 33 (1996) 2359–2374.
I. Babuska, R. Duran and R. Rodriguez, Analysis of the efficiency of an posteriori error estimator for linear triangular finite elements, SIAM J. Numer. Anal. 29 (1992) 947–946.
I. Babuska and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754.
I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Wiley, New York, 1986).
I. Babuska, T. Strouboulis and S.K. Gangaraj, A posteriori estimation of the error in the recovered derivatives of the finite element solution, Comput. Methods Appl. Mech. Engrg. 150 (1997) 369–396.
I. Babuska, T. Strouboulis, S.K. Gangaraj and C.S. Upadhyay, Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives, Comput. Methods Appl. Mech. Engrg. 140 (1997) 1–37.
I. Babuska, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Engrg. 114 (1994) 307–378.
R.E. Bank, Analysis of a multilevel iterative methods for nonlinear finite element equations, Math. Comp. 39 (1982) 453–465.
R.E. Bank, Hierarchical bases and the finite element method, Acta Numerica 5 (1996) 1–43.
R.E. Bank, A simple analysis of some a posteriori error estimates, Appl. Numer. Math. 26 (1998) 153–164.
R.E. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms (manuscript) (1998).
R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993) 921–935.
R.E. Bank and R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM J. Numer. Anal. 34 (1997) 979–997.
R.E. Bank and A. Weiser, Some a posteriori error estimates for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.
D.M. Bedivan, A two-grid method for solving elliptic problems with inhomogeneous boundary conditions, Comput. Math. Appl. 29 (1995) 59–66.
H. Blum, Q. Lin and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986) 11–38.
F.A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996) 1188–1204.
J.H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics, Vol. 294 (London; Copublished in the USA with Wiley, New York, 1993).
J.H. Bramble, R.E. Ewing, R.R. Parashkevov and J.E. Pasciak, Domain decomposition methods for problems with partial refinement, SIAM J. Sci. Statist. Comput. 13 (1992) 397–410.
J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg. 67 (1988) 149–159.
A. Brandt, Multilevel adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333–390.
T. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica 3 (1994) 61–143.
P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I) (North-Holland, Amsterdam, 1991).
C.N. Dawson and M.F. Wheeler, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. Math. 180 (1994) 191–203.
C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal. 35 (1998) 435–452.
K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica (1995) 105–158.
K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations (Cambridge Univ. Press, Cambridge, 1996).
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991) 43–77.
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems, SIAM J. Numer. Anal. 32 (1991) 1729–1749.
P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, MA, 1985).
W. Hackbusch, Multigrid Methods and Applications (Springer, New York, 1985).
C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg. 82 (1990) 301–322.
W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput. 69 (1995) 263–274.
Q. Lin, Some problems concerning approximate solutions of operator equations, Acta Math. Sinica 22 (1979) 219–230 (in Chinese).
M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal. 32 (1995) 1170–1184.
J. Nitsche and A.H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974) 937–955.
R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 64 (1995) 1–22.
R. Rannacher, On the convergence of the Newton-Raphson method for strongly nonlinear finite element equations, in: Nonlinear Computational Mechanics, eds. P.Wriggers and W. Wanger (Springer, Berlin, 1991).
R. Rannacher and R. Scott, Some optimal error estimate for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437–445.
A. Reusken, Convergence of the multigrid full approximation scheme for a class of elliptic mildly nonlinear boundary value problems, Numer. Math. 52 (1988) 251–277.
A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates, Math. Comp. 67 (1998) 877–899.
A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Math. Comp. 31 (1977) 414–442.
A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Part II, Math. Comp. 64 (1995) 907–928.
A.H. Schatz and J. Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp. 65 (1996) 19–27.
T. Utnes, Two-grid finite element formulations of the incompressible Navier-Stokes equations, Comm. Numer. Methods Engrg. 34 (1997) 675–684.
R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994) 445–475.
R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations, Bericht Nr. 180, Fakultät für Mathematik, Ruhr-Universität Bochum (1995).
R. Verfürth, A Review of A-Posteriori Error Estimation and Adaptive Mesh Refinement (Wiley/ Teubner, New York/Leipzig, 1996).
R. Verfürth, A Posteriori error estimates for nonlinear problems, Lr-estimates for finite element discretizations of elliptic equations, RAIRO Modél Math. Anal. Numér. 32 (1996) 817–842.
L.B.Wahlbin, Local behavior in finite element methods, in: Handbook of Numerical Analysis, Vol. II, Finite ElementMethods (Part 1) eds. P.G. Ciarlet and J.L. Lions (Elsevier, Amsterdam, 1991) pp. 355–522.
L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Vol. 1605 (Springer, Berlin, 1995).
J. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal. 29 (1992) 303–319.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34(4) (1992) 581–613.
J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput. 15 (1994) 231–237.
J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996) 1759–1777.
J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000) 881–909.
J. Xu and A. Zhou, Locality and parallelization of finite elements, in: Proc. of the 11th Domain Decomposition Methods (2000) to appear.
J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001).
J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations for eigenvalue problems (2000) in preparation.
J. Xu and J. Zou, Some non-overlapping domain decomposition methods, SIAM Rev. 40 (1998) 857–914.
H. Yserentant, Old and new proofs for multigrid algorithms, Acta Numerica 2 (1993) 285–326.
A. Zhou, C.L. Liem, T.M. Shih and T. Lü, Error analysis on bi-parameter finite elements, Comput. Methods Appl. Mech. Engrg. 158 (1998) 329–339.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Xu, J., Zhou, A. Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems. Advances in Computational Mathematics 14, 293–327 (2001). https://doi.org/10.1023/A:1012284322811
Issue Date:
DOI: https://doi.org/10.1023/A:1012284322811