iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1023/A:1012284322811
Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems | Advances in Computational Mathematics Skip to main content
Log in

Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, some local and parallel discretizations and adaptive finite element algorithms are proposed and analyzed for nonlinear elliptic boundary value problems in both two and three dimensions. The main technique is to use a standard finite element discretization on a coarse grid to approximate low frequencies and then to apply some linearized discretization on a fine grid to correct the resulted residual (which contains mostly high frequencies) by some local/parallel procedures. The theoretical tools for analyzing these methods are some local a priori and a posteriori error estimates for finite element solutions on general shape-regular grids that are also obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).

    Google Scholar 

  2. M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993) 23–50.

    Google Scholar 

  3. E. Allgower, K. Böhmer, F. Portra and W. Rheinboldt, A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal. 23 (1986) 160–169.

    Google Scholar 

  4. O. Axelsson and W. Layton, A two-level discretization of nonlinear boundary value problems, SIAM J. Numer. Anal. 33 (1996) 2359–2374.

    Google Scholar 

  5. I. Babuska, R. Duran and R. Rodriguez, Analysis of the efficiency of an posteriori error estimator for linear triangular finite elements, SIAM J. Numer. Anal. 29 (1992) 947–946.

    Google Scholar 

  6. I. Babuska and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754.

    Google Scholar 

  7. I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Wiley, New York, 1986).

    Google Scholar 

  8. I. Babuska, T. Strouboulis and S.K. Gangaraj, A posteriori estimation of the error in the recovered derivatives of the finite element solution, Comput. Methods Appl. Mech. Engrg. 150 (1997) 369–396.

    Google Scholar 

  9. I. Babuska, T. Strouboulis, S.K. Gangaraj and C.S. Upadhyay, Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives, Comput. Methods Appl. Mech. Engrg. 140 (1997) 1–37.

    Google Scholar 

  10. I. Babuska, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Engrg. 114 (1994) 307–378.

    Google Scholar 

  11. R.E. Bank, Analysis of a multilevel iterative methods for nonlinear finite element equations, Math. Comp. 39 (1982) 453–465.

    Google Scholar 

  12. R.E. Bank, Hierarchical bases and the finite element method, Acta Numerica 5 (1996) 1–43.

    Google Scholar 

  13. R.E. Bank, A simple analysis of some a posteriori error estimates, Appl. Numer. Math. 26 (1998) 153–164.

    Google Scholar 

  14. R.E. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms (manuscript) (1998).

  15. R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993) 921–935.

    Google Scholar 

  16. R.E. Bank and R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM J. Numer. Anal. 34 (1997) 979–997.

    Google Scholar 

  17. R.E. Bank and A. Weiser, Some a posteriori error estimates for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Google Scholar 

  18. D.M. Bedivan, A two-grid method for solving elliptic problems with inhomogeneous boundary conditions, Comput. Math. Appl. 29 (1995) 59–66.

    Google Scholar 

  19. H. Blum, Q. Lin and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986) 11–38.

    Google Scholar 

  20. F.A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996) 1188–1204.

    Google Scholar 

  21. J.H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics, Vol. 294 (London; Copublished in the USA with Wiley, New York, 1993).

    Google Scholar 

  22. J.H. Bramble, R.E. Ewing, R.R. Parashkevov and J.E. Pasciak, Domain decomposition methods for problems with partial refinement, SIAM J. Sci. Statist. Comput. 13 (1992) 397–410.

    Google Scholar 

  23. J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg. 67 (1988) 149–159.

    Google Scholar 

  24. A. Brandt, Multilevel adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333–390.

    Google Scholar 

  25. T. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica 3 (1994) 61–143.

    Google Scholar 

  26. P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I) (North-Holland, Amsterdam, 1991).

    Google Scholar 

  27. C.N. Dawson and M.F. Wheeler, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. Math. 180 (1994) 191–203.

    Google Scholar 

  28. C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal. 35 (1998) 435–452.

    Google Scholar 

  29. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica (1995) 105–158.

  30. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  31. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991) 43–77.

    Google Scholar 

  32. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems, SIAM J. Numer. Anal. 32 (1991) 1729–1749.

    Google Scholar 

  33. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, MA, 1985).

    Google Scholar 

  34. W. Hackbusch, Multigrid Methods and Applications (Springer, New York, 1985).

    Google Scholar 

  35. C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg. 82 (1990) 301–322.

    Google Scholar 

  36. W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput. 69 (1995) 263–274.

    Google Scholar 

  37. Q. Lin, Some problems concerning approximate solutions of operator equations, Acta Math. Sinica 22 (1979) 219–230 (in Chinese).

    Google Scholar 

  38. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal. 32 (1995) 1170–1184.

    Google Scholar 

  39. J. Nitsche and A.H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974) 937–955.

    Google Scholar 

  40. R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 64 (1995) 1–22.

    Google Scholar 

  41. R. Rannacher, On the convergence of the Newton-Raphson method for strongly nonlinear finite element equations, in: Nonlinear Computational Mechanics, eds. P.Wriggers and W. Wanger (Springer, Berlin, 1991).

    Google Scholar 

  42. R. Rannacher and R. Scott, Some optimal error estimate for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437–445.

    Google Scholar 

  43. A. Reusken, Convergence of the multigrid full approximation scheme for a class of elliptic mildly nonlinear boundary value problems, Numer. Math. 52 (1988) 251–277.

    Google Scholar 

  44. A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates, Math. Comp. 67 (1998) 877–899.

    Google Scholar 

  45. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Math. Comp. 31 (1977) 414–442.

    Google Scholar 

  46. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Part II, Math. Comp. 64 (1995) 907–928.

    Google Scholar 

  47. A.H. Schatz and J. Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp. 65 (1996) 19–27.

    Google Scholar 

  48. T. Utnes, Two-grid finite element formulations of the incompressible Navier-Stokes equations, Comm. Numer. Methods Engrg. 34 (1997) 675–684.

    Google Scholar 

  49. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994) 445–475.

    Google Scholar 

  50. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations, Bericht Nr. 180, Fakultät für Mathematik, Ruhr-Universität Bochum (1995).

  51. R. Verfürth, A Review of A-Posteriori Error Estimation and Adaptive Mesh Refinement (Wiley/ Teubner, New York/Leipzig, 1996).

    Google Scholar 

  52. R. Verfürth, A Posteriori error estimates for nonlinear problems, Lr-estimates for finite element discretizations of elliptic equations, RAIRO Modél Math. Anal. Numér. 32 (1996) 817–842.

    Google Scholar 

  53. L.B.Wahlbin, Local behavior in finite element methods, in: Handbook of Numerical Analysis, Vol. II, Finite ElementMethods (Part 1) eds. P.G. Ciarlet and J.L. Lions (Elsevier, Amsterdam, 1991) pp. 355–522.

    Google Scholar 

  54. L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Vol. 1605 (Springer, Berlin, 1995).

    Google Scholar 

  55. J. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal. 29 (1992) 303–319.

    Google Scholar 

  56. J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34(4) (1992) 581–613.

    Google Scholar 

  57. J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput. 15 (1994) 231–237.

    Google Scholar 

  58. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996) 1759–1777.

    Google Scholar 

  59. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000) 881–909.

    Google Scholar 

  60. J. Xu and A. Zhou, Locality and parallelization of finite elements, in: Proc. of the 11th Domain Decomposition Methods (2000) to appear.

  61. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001).

  62. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations for eigenvalue problems (2000) in preparation.

  63. J. Xu and J. Zou, Some non-overlapping domain decomposition methods, SIAM Rev. 40 (1998) 857–914.

    Google Scholar 

  64. H. Yserentant, Old and new proofs for multigrid algorithms, Acta Numerica 2 (1993) 285–326.

    Google Scholar 

  65. A. Zhou, C.L. Liem, T.M. Shih and T. Lü, Error analysis on bi-parameter finite elements, Comput. Methods Appl. Mech. Engrg. 158 (1998) 329–339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhou, A. Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems. Advances in Computational Mathematics 14, 293–327 (2001). https://doi.org/10.1023/A:1012284322811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012284322811

Navigation