iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S40815-021-01106-W
Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Nonstrict-Feedback and Dead Zone | International Journal of Fuzzy Systems Skip to main content
Log in

Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Nonstrict-Feedback and Dead Zone

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the adaptive fuzzy tracking control problem for a class of stochastic nonlinear systems with nonstrict-feedback structure and dead zone input. By introducing fuzzy logic system, the difficulties caused by unknown nonlinear functions and nonstrict-feedback are overcome. Considering the asymmetric dead zone input, an adaptive tracking controller is constructed by integrating the fuzzy logic system into the backstepping technology. The controller can not only realize the output signal tracking reference signal with a small tracking error, but also ensure that all signals in the closed-loop system are bounded in probability. Finally, an example is proposed to demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li, Y.M., Tong, S.C., Li, T.S.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)

    Article  Google Scholar 

  2. Wu, J., Li, J., Zong, G.D., Chen, W.S.: Global finite-time adaptive stabilization of nonlinearly parametrized systems with multiple unknown control directions. IEEE Trans. Syst. Man Cybern. 47(7), 1405–1414 (2017)

    Article  Google Scholar 

  3. Li, X.D., Cao, J.D., Ho, D.W.C.: Impulsive control of nonlinear systems with time-varying delay and applications. IEEE Trans. Cybern. 50(6), 2661–2673 (2020)

    Article  Google Scholar 

  4. Zhao, L., Yu, J.P., Lin, C., Ma, Y.M.: Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping. IEEE Trans. Syst. Man Cybern. 48(11), 2003–2012 (2018)

    Article  Google Scholar 

  5. Li, Z.M., Chang, X.H., Park, J.H.: Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints. IEEE Trans. Syst. Man Cybern. (2019). https://doi.org/10.1109/TSMC.2019.2931530

    Article  Google Scholar 

  6. Zhao, X.D., Wang, X.Y., Zhang, S., Zong, G.D.: Adaptive neural backstepping control design for a class of nonsmooth nonlinear systems. IEEE Trans. Syst. Man Cybern. 49(9), 1820–1831 (2019)

    Article  Google Scholar 

  7. Wu, B., Chang, X.H., Zhao, X.D.: Fuzzy \(H_\infty \) output feedback control for nonlinear NCSs with quantization and stochastic communication protocol. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3005342

    Article  Google Scholar 

  8. Li, N., Liu, H., Li, Y.G., Xiang, W., Xu, J.: A new nussbaum-type function and its application in the control of uncertain strict-feedback systems. Int. J. Fuzzy Syst. 22, 2284–2299 (2020)

    Article  Google Scholar 

  9. Hu, J.T., Sui, G.X., Lv, X.X., Li, X.D.: Fixed-time control of delayed neural networks with impulsive perturbations. Nonlinear Anal. 23, 904–920 (2018)

    Article  MathSciNet  Google Scholar 

  10. Xia, J.W., Zhang, J., Sun, W., Zhang, B.Y., Wang, Z.: Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. 46(7), 1541–1548 (2019)

    Article  Google Scholar 

  11. Chen, B., Liu, X.P., Liu, K.F., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)

    Article  MathSciNet  Google Scholar 

  12. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  13. Su, S.F., Chen, M.C., Hsueh, Y.C.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man Cybern. 46(8), 2311–2317 (2017)

    Article  Google Scholar 

  14. Ma, Z.Y., Ma, H.J.: Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 28(1), 122–133 (2020)

    Article  Google Scholar 

  15. Su, S.F., Wang, K.J., chen, M.C., Rudas I.J., Tsai, C.C.: Adaptive PD fuzzy control with dynamic learning rate for two-wheeled balancing six degrees of freedom robotic arm. In: Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE). pp. 1258-1261 (2015)

  16. Li, B.M., Xia, J.W., Zhang, H.S., Shen, H., Wang, Z.: Event-triggered adaptive fuzzy tracking control for nonlinear systems. Int. J. Fuzzy Syst. 22, 1389–1399 (2020)

    Article  Google Scholar 

  17. Sun, W., Wu, Y.Q., Sun, Z.Y.: Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2967295

    Article  Google Scholar 

  18. Xia, J.W., Chen, G.L., Park, J.H., Shen, H., Zhuang, G.M.: Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2970856

    Article  Google Scholar 

  19. Zhang, H.S., Xia, J.W., Zhang, W.H., Zhang, B.Y., Shen, H.: pth moment asymptotic stability/stabilization and pth moment observability of linear stochastic systems: generalized h-representation. IEEE Trans. Syst. Man Cybern. (2020). https://doi.org/10.1109/TSMC.2020.3011217

    Article  Google Scholar 

  20. Zhang, H.S., Xia, J.W., Shen, H., Zhang, B.Y., Wang, Z.: Pth moment regional stability/stabilization and generalized pole assignment of linear stochastic systems: based on the generalized H-representation method. Int. J. Robust Nonlinear Control 30, 3234–3249 (2020)

    Article  Google Scholar 

  21. Zhang, H.S., Xia, J.W., Zhang, Y.N., Shen, H., Wang, Z.: pth moment D-stability/stabilization of linear discrete-time stochastic systems. Sci. China Inf. Sci. (2019). https://doi.org/10.1007/s11432-019-2843-9

    Article  Google Scholar 

  22. Zhang, T.P., Xia, X.N.: Adaptive output feedback tracking control of stochastic nonlinear systems with dynamic uncertainties. Int. J. Robust Nonlinear Control 25(9), 1282–1300 (2015)

    Article  MathSciNet  Google Scholar 

  23. Chen, W.S., Jiao, L.C., Li, J., Li, R.H.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. 40(3), 939–950 (2010)

    Article  Google Scholar 

  24. Wu, Y., Pan, Y.N., Chen, M., Li, H.Y.: Quantized adaptive finite-time bipartite NN tracking control for stochastic multiagent systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3008020

    Article  Google Scholar 

  25. Tong, S.C., Li, Y., Li, Y.M., Liu, Y.J.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern. 41(6), 1693–1704 (2011)

    Article  Google Scholar 

  26. Xia, J.W., Li, B.M., Su, S.F., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2985638

    Article  Google Scholar 

  27. Wang, X.J., Wu, Q.H., Yin, X.H.: Command filter based adaptive control of asymmetric output-constrained switched stochastic nonlinear systems. ISA Trans. 91, 114–124 (2019)

    Article  Google Scholar 

  28. Su, Y.M., Chen, B., Lin, C., Wang, H.H., Zhou, S.W.: Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf. Sci. 369, 748–764 (2016)

    Article  Google Scholar 

  29. Sun, W., Su, S.F., Wu, Y.Q., Xia, J.W.: A novel adaptive fuzzy control for output constrained stochastic non-strict feedback nonlinear systems. IEEE Trans Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2969909

    Article  Google Scholar 

  30. Wang, H.Q., Chen, B., Liu, K.F., Liu, X.P., Lin, C.: Adaptive neural tracking control for a Class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Lear. Syst. 25(5), 947–958 (2014)

    Article  Google Scholar 

  31. Wu, J., Chen, X.M., Zhao, Q.J., Li, J., Wu, Z.G.: Adaptive neural dynamic surface control with prespecified tracking accuracy of uncertain stochastic nonstrict-feedback systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3012607

    Article  Google Scholar 

  32. Li, H.Y., Bai, L., Zhou, Q., Lu, R.Q., Wang, L.J.: Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. 47(8), 2185–2197 (2017)

    Article  Google Scholar 

  33. Wang, H.Q., Liu, X.P., Liu, K.F., Karimi, H.R.: Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 23(5), 1746–1760 (2015)

    Article  Google Scholar 

  34. Su, H., Zhang, W.H.: Fuzzy quantized control of nonstrict feedback nonlinear systems with actuator faults. Int. J. Fuzzy Syst. 22, 1922–1936 (2020)

    Article  Google Scholar 

  35. Zhou, Q., Li, H.Y., Wang, L.J., Lu, R.Q.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. 48(10), 1747–1758 (2018)

    Article  Google Scholar 

  36. Yu, J.P., Shi, P., Dong, W.J., Lin, C.: Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering. IEEE Trans. Fuzzy Syst. 26(1), 46–55 (2018)

    Article  Google Scholar 

  37. Su, H., Zhang, W.H.: Adaptive fuzzy control of stochastic nonlinear systems with fuzzy dead zones and unmodeled dynamics. IEEE Trans. Cybern. 50(2), 587–599 (2020)

    Article  Google Scholar 

  38. Li, Z.F., Li, T.S., Feng, G.: Adaptive neural control for a class of stochastic nonlinear time-delay systems with unknown dead zone using dynamic surface technique. Int. J. Robust Nonlinear Control 26(4), 759–781 (2016)

    Article  MathSciNet  Google Scholar 

  39. Li, Y.M., Tong, S.C., Li, T.S., Jing, X.J.: Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach. Fuzzy Sets Syst. 235(16), 1–34 (2014)

    Article  MathSciNet  Google Scholar 

  40. Liu, Z., Wang, F., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive tracking control for a class of nonlinear systems with a fuzzy dead-zone input. IEEE Trans. Fuzzy Syst. 23(1), 193–204 (2015)

    Article  Google Scholar 

  41. Liu, Y.J., Tong, S.C.: Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zones input. Automatic 45(3), 497–505 (2015)

    Google Scholar 

  42. Du, P.H., Sun, K., Zhao, S.Y., Liang, H.J.: Observer-based adaptive fuzzy control for time-varying state constrained strict-feedback nonlinear systems with dead-zone. Int. J. Fuzzy Syst. 21, 733–744 (2019)

    Article  MathSciNet  Google Scholar 

  43. Zhang, T.P., Ge, S.R.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatic 43(6), 1021–1033 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous Referees and the Editors for their valuable comments and suggestions, which greatly improved the exposition and quality of the work. This work was supported by the National Natural Science Foundation of China under Grants 61973148, 61773191; the Natural Science Foundation of Shandong Province under Grant ZR2018MF028; Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Y., Xia, J., Yang, W. et al. Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Nonstrict-Feedback and Dead Zone. Int. J. Fuzzy Syst. 23, 2324–2334 (2021). https://doi.org/10.1007/s40815-021-01106-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01106-w

Keywords

Navigation