iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S13198-024-02370-3
Adaptive joint source coding LDPC for energy efficient communication in wireless network on chip | International Journal of System Assurance Engineering and Management Skip to main content
Log in

Adaptive joint source coding LDPC for energy efficient communication in wireless network on chip

  • ORIGINAL ARTICLE
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The Wireless Network-on-Chip (WiNoC) technology has emerged as a promising approach to overcome the growing communication constraints present in multi-core systems. Nevertheless, a significant obstacle is presented by WiNoCs’ steadily rising energy consumption. In this article, we present a novel method for addressing this issue by combining adaptive joint source coding with low-density parity-check (LDPC) encoding. This strategy is presented as an innovative way to handle the problem. Two key modifications are involved in the implementation of our method: firstly, the accurate tuning of the transform coding threshold in compressive sensing to achieve effective data compression, and secondly, the intelligent control of the number of parity checks in LDPC coding to reduce both energy consumption and latency. These adaptive techniques are tailored to meet the signal-to-noise ratio estimates and the dependability standards unique to the application. Our findings demonstrate a substantial accomplishment, with a remarkable 4.2% reduction in power consumption compared to other methods currently in use. This achievement highlights the vast potential for achieving significant energy savings in real-world applications and is a pioneering contribution to the development of energy-efficient communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Funding

The authors did not receive support from any organization for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Sindgi.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of this article.

Ethical approval

The authors did not involve any human/animal participation to carry out the research work and have nothing to declare.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindgi, A., Mahadevaswamy, U.B. Adaptive joint source coding LDPC for energy efficient communication in wireless network on chip. Int J Syst Assur Eng Manag 15, 3688–3705 (2024). https://doi.org/10.1007/s13198-024-02370-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-024-02370-3

Keywords

Navigation