iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S13198-024-02266-2
On bivariate Teissier model using Copula: dependence properties, and case studies | International Journal of System Assurance Engineering and Management Skip to main content
Log in

On bivariate Teissier model using Copula: dependence properties, and case studies

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

To precisely represent bivariate continuous variables, this work presents an innovative approach that emphasizes the interdependencies between the variables. The technique is based on the Teissier model and the Farlie-Gumbel-Morgenstern (FGM) copula and seeks to create a complete framework that captures every aspect of associated occurrences. The work addresses data variability by utilizing the oscillatory properties of the FGM copula and the flexibility of the Teissier model. Both theoretical formulation and empirical realization are included in the evolution, which explains the joint cumulative distribution function \(\mathfrak {F}(z_{1}, z_{2})\), the marginals \(\mathfrak {F}(z_{1})\) and \(\mathfrak {F} (z_{2})\), and the probability density function (PDF) \(\mathfrak {f}(z_{1},z_{2})\). The novel modeling of bivariate lifetime phenomena that combines the adaptive properties of the Teissier model with the oscillatory characteristics of the FGM copula represents the contribution. The study emphasizes the effectiveness of the strategy in controlling interdependencies while advancing academic knowledge and practical application in bivariate modelling. In parameter estimation, maximum likelihood and Bayesian paradigms are employed through the use of the Markov Chain Monte Carlo (MCMC). Theorized models are examined closely using rigorous model comparison techniques. The relevance of modern model paradigms is demonstrated by empirical findings from the Burr dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd Elaal MK, Jarwan RS (2017) Inference of bivariate generalized exponential distribution based on copula functions. Appl Math Sci 11(24):1155–1186

    Google Scholar 

  • Abulebda M, Pathak AK, Pandey A, Tyagi S (2022) On a bivariate XGamma distribution derived from Copula. Statistica (Bologna) 82(1):15–40

    Google Scholar 

  • Abulebda M, Pandey A, Tyagi S (2023) On bivariate inverse Lindley distribution derived from Copula. Thailand Stat 21(2):291–304

    Google Scholar 

  • Agiwal V, Tyagi S, Chesneau C (2023) Bayesian and frequentist estimation of stress-strength reliability from a new extended Burr XII distribution: Accepted: March 2023. REVSTAT-Statistical Journal

  • Almetwally EM, Sabry MA, Alharbi R, Alnagar D, Mubarak SA, Hafez EH (2021) Marshall–Olkin alpha power weibull distribution: different methods of estimation based on type-i and type-ii censoring. Complexity

  • Amblard C, Girard S (2009) A new extension of bivariate FGM copulas. Metrika 70(1):1–17

    MathSciNet  Google Scholar 

  • Anderson JE, Louis TA, Holm NV, Harvald B (1992) Time-dependent association measures for bivariate survival distributions. J Am Stat Assoc 87(419):641–650

    MathSciNet  Google Scholar 

  • Balakrishnan N, Lai CD (2009) Continuous bivariate distributions. Springer, Berlin

    Google Scholar 

  • Bhattacharjee S, Misra SK (2016) Some aging properties of Weibull models. Electr J Appl Stat Anal 9(2):297–307

    MathSciNet  Google Scholar 

  • Chacko M, Mohan R (2018) Bayesian analysis of weibull distribution based on progressive Type-II censored competing risks data with binomial removals. Comput Statistics 34(4):233–252

    MathSciNet  Google Scholar 

  • Dasgupta R (2011) On the distribution of Burr with applications. Sankhya B 73:1–19

    MathSciNet  Google Scholar 

  • de Oliveira Peres MV, Achcar JA, Martinez EZ (2020) Bivariate lifetime models in presence of cure fraction: a comparative study with many different copula functions. Heliyon 6(6):e03961

    Google Scholar 

  • Dolati A, Amini M, Mirhosseini SM (2014) Dependence properties of bivariate distributions with proportional (reversed) hazards marginals. Metrika 77(3):333–347

    MathSciNet  Google Scholar 

  • Eberly LE, Casella G (2003) Estimating Bayesian credible intervals. J Stat Plann Infer 112(1–2):115–32. https://doi.org/10.1016/S0378-3758(02)00327-0

    Article  MathSciNet  Google Scholar 

  • Farlie DJ (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika 47(3/4):307–323

    MathSciNet  Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York City

    Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707

    MathSciNet  Google Scholar 

  • Holland PW, Wang YJ (1987) Dependence function for continuous bivariate densities. Commun Stat-Theory Methods 16(3):863–876

    MathSciNet  Google Scholar 

  • Ibrahim JG, Ming-Hui C, Sinha D (2001) Bayesian survival analysis. Springer, Berlin

    Google Scholar 

  • Jodrá Esteban P, Jiménez Gamero MD, Alba Fernández MV (2015) On the Muth distribution. Math Model Anal 20(3):291–310

    MathSciNet  Google Scholar 

  • Jodrá Esteban P, Gómez HW, Jiménez Gamero MD, Alba Fernández MV (2017) The power Muth distribution. Math Model Anal 22(2):186–201

    MathSciNet  Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. CRC Press, Cambridge

    Google Scholar 

  • Johnson NL, Kotz S (1975) A vector multivariate hazard rate. J Multivar Anal 5(1):53–66

    MathSciNet  Google Scholar 

  • Kundu D, Gupta AK (2017) On bivariate inverse Weibull distribution. Brazil J Probabil Stat 31(2):275–302

    MathSciNet  Google Scholar 

  • Kundu Debasis, Gupta Rameshwar D (2009) Bivariate generalized exponential distribution. J Multivar Anal 100(4):581–593

    MathSciNet  Google Scholar 

  • Laurent AG (1975) Failure and mortality from wear and ageing. The Teissier model. In: A modern course on statistical distributions in scientific work. Springer, Dordrecht. pp. 301-320

  • Marshall AW, Olkin I (1967) A generalized bivariate exponential distribution. J Appl Probab 4(2):291–302

    MathSciNet  Google Scholar 

  • Mirhosseini SM, Amini M, Kundu D, Dolati A (2015) On a new absolutely continuous bivariate generalized exponential distribution. Stat Meth Appl 24(1):61–83

    MathSciNet  Google Scholar 

  • Morgenstern D (1956) Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik 8:234–235

    MathSciNet  Google Scholar 

  • Muth EJ (1977) Reliability models with positive memory derived from the mean residual life function. Theory Appl Reliabil 2:401–435

    Google Scholar 

  • Nair NU, Sankaran PG, John P (2018) Modelling bivariate lifetime data using copula. Metron 76(2):133–153

    MathSciNet  Google Scholar 

  • Najarzadegan H, Alamatsaz MH, Kazemi I (2019) Discrete bivariate distributions generated By Copulas: DBEEW distribution. J Stat Theory Practice 13(3):1–30

    MathSciNet  Google Scholar 

  • Nelsen RB (2006) Springer series in statistics, An introduction to copulas

  • Norstrom JG (1996) The use of precautionary loss functions in risk analysis. IEEE Trans Reliab 45(3):400–403

    Google Scholar 

  • Oakes D (1989) Bivariate survival models induced by frailties. J Am Stat Assoc 84(406):487–493

    MathSciNet  Google Scholar 

  • Pathak AK, Vellaisamy P (2016) Various measures of dependence of a new asymmetric generalized Farlie-Gumbel-Morgenstern copulas. Commun Stat-Theory Methods 45(18):5299–5317

    MathSciNet  Google Scholar 

  • Peres MVDO, Achcar JA, Martinez EZ (2018) Bivariate modified Weibull distribution derived from Farlie-Gumbel-Morgenstern copula: a simulation study. Electr J Appl Stat Anal 11(2):463–488

    MathSciNet  Google Scholar 

  • Popović BV, Genç Aİ, Domma F (2018) Copula-based properties of the bivariate Dagum distribution. Comput Appl Math 37(5):6230–6251

    MathSciNet  Google Scholar 

  • Rinne H (2008) The Weibull distribution: a handbook. CRC Press, Cambridge

    Google Scholar 

  • Samanthi RG, Sepanski J (2019) A bivariate extension of the beta generated distribution derived from copulas. Commun Stat-Theory Method 48(5):1043–1059

    MathSciNet  Google Scholar 

  • Sankaran PG, Nair NU (1993) A bivariate Pareto model and its applications to reliability. Naval Res Logist (NRL) 40(7):1013–1020

    MathSciNet  Google Scholar 

  • Santos CA, Achcar JA (2010) A Bayesian analysis for multivariate survival data in the presence of covariates. J Stat Theory Appl 9:233–253

    MathSciNet  Google Scholar 

  • Saraiva EF, Suzuki AK, Milan LA (2018) Bayesian computational methods for sampling from the posterior distribution of a bivariate survival model, based on AMH copula in the presence of right-censored data. Entropy 20(9):642

    MathSciNet  Google Scholar 

  • Sarhan AM, Hamilton DC, Smith B, Kundu D (2011) The bivariate generalized linear failure rate distribution and its multivariate extension. Comput Stat Data Anal 55(1):644–654

    MathSciNet  Google Scholar 

  • Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231

    MathSciNet  Google Scholar 

  • Taheri B, Jabbari H, Amini M (2018) Parameter estimation of bivariate distributions in presence of outliers: An application to FGM copula. J Comput Appl Math 343:155–173

    MathSciNet  Google Scholar 

  • Teissier G (1934) Recherches sur le vieillissement et sur les lois de la mortalité. Annales de physiologie et de physicochimie biologique 10(1):237–284

    Google Scholar 

  • Tyagi S (2022) Bivariate Inverse Topp-Leone Model to Counter Heterogeneous Data. arXiv preprint arXiv:2206.05798

  • Tyagi S, Kumar S, Pandey A, Saha S, Bagariya H (2022) Power xgamma distribution: properties and its applications to cancer data. Int J Stat Reliabil Eng 9(1):51–60

    Google Scholar 

Download references

Funding

The study did not receive any grant from any organisation public or private.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikhar Tyagi.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Human and animal rights

There is no involvement of human participation and/or animals.

Informed consent

Author has approved the manuscript and agree with its submission to the journal for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S. On bivariate Teissier model using Copula: dependence properties, and case studies. Int J Syst Assur Eng Manag 15, 2483–2499 (2024). https://doi.org/10.1007/s13198-024-02266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-024-02266-2

Keywords

Navigation