Abstract
The cooperative multi-targets assignment for multiple unmanned aerial vehicles (UAV) is a complex combinatorial optimization problem. Multi-UAVs cooperation increases the scale of problems which cause a noticeable increase in task planning time. Moreover, it is difficult to build a unified assignment model because different tasks often require different numbers of UAVs and targets. Besides, the cooperative constraints of multi-UAVs in a three-dimensional environments are more complex than that in a two-dimensional environments, which makes it difficult to obtain an optimal solution. To solve these problems, we present a unified gene coding strategy to handle various models in a consistent framework. Then, a cooperative target assignment algorithm in a three-dimensional environments based on discrete mapping differential evolution is given. First, we use flight path cost to indicate the assignment relationship between the UAV and the target, which turns the optimization problem from discrete space to continuous space, and so the solving process can be simplified. Secondly, in order to obtain reasonable offspring for differential evolution, we map the solution back to the assignment relationship space according to inverse mapping rules. Finally, to avoid falling into a local optimal, a balance between exploration and exploitation is achieved by combining the dynamic crossover rate with the hybrid evolution strategy. The simulation results show that the proposed discrete mapping differential evolution algorithm with the unified gene coding strategy not only effectively solves the cooperative multi-targets assignment problem, but also improves the accuracy of the multi-targets assignment. It is also suitable for solving the large scale problem of assignment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barlow GJ, Oh CK, Smith SF (2008) Evolving cooperative control on sparsely distributed tasks for UAV teams without global communication [C]. In: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, pp 177–184
Vandermeersch BRR, Chu QP, Mulder JA et al (2005) Design and Implementation of a mission planner for multiple UCAVs in a SEAD mission [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, vol 6480. AIAA, San Francisco
Eun Y, Bang H (2009) Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithms [J]. J Aircr 46(1):338–343
Bethke B, Valenti M, How JP (2008) UAV task assignment [J]. IEEE Robot Autom Mag 15(1):39–44
Yi Liu, Weimin Li, Qinghua Xing et al (2010) Cooperative mission assignment optimization of unmanned combat aerial vehicles based on bi-level programming [J]. Syst Eng Electron 32(3):579–583
Humphrey L, Cohen K (2010) Application of proper orthogonal decomposition and artificial neural networks to multiple UAV task assignment. In: Invited Paper, AIAA Guidance, Navigation, and Control Conference, AIAA, vol 8439. Toronto, Ontario Canada, 2–5 Aug 2010
Hoai ALT, Duc MN, Tao PD (2012) Globally solving a non-linear UAV task assignment problem by stochastic and deterministic optimization approaches [J]. Optim Lett 6(2):315–329
Kuhn HW (1956) Variants of the Hungarian method for assignment problems [J]. Nav Res Logist Q 3(4):253–258
Yi L, MingAn Tong (2002) An application of Hungarian algorithm to the multi-target assignment [J]. Fire Control and Command Control 27(4):34–37
Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm[J]. Int J Mach Learn Cybern 1(1–4):53–61
Bellingham J, Tillerson M, Richards A et al (2003) Multi-task allocation and path planning for cooperating UAVs [M]. Cooperative Control: Models, Applications and Algorithms. Springer, US, pp 23–41
Maddula T, Minai AA, Polycarpou MM (2004) Multi-Target assignment and path planning for groups of UAVs [J]. Recent Dev Coop Control Optim 3:261–272
Lemaire T, Alami R, Lacroix S (2004) A distributed tasks allocation scheme in multi-UAV context [C] Robotics and Automation, 2004. In: Proceedings of ICRA’04. IEEE International Conference on IEEE 2004, vol 4, pp 3622–3627
Sujit PB, Sinha A, Ghose D (2006) Multiple UAV task allocation using negotiation [C]. In: Proceedings of the fifth International Joint Conference on Autonomous agents and multiagent systems. ACM, pp 471–478
Tao L, Lincheng S, Huayong Z, Yifeng Niu (2007) Distributed task allocation & coordination technique of multiple UCAVs for cooperative tasks [J]. Acta Autom Sin 33(7):731–737
Yuan L (2011) Research on resources allocation and formation trajectories optimization for multiple UAVs cooperation mission [D]. National University of Defense Technology, Changsha
Chen J, Sun D (2012) Coalition-based approach to task allocation of multiple robots with resource constraints [J]. IEEE Trans Autom Sci Eng 9(3):516–528
Zhao PS, Jiang JG, Liang CY (2011) A distributed algorithm for parallel multi-task allocation based on profit sharing learning [J]. Acta Autom Sin 37(7):865–872
Alidaee B, Wang H, Landram F (2011) On the flexible demand assignment problems: case of unmanned aerial vehicles [J]. IEEE Trans Autom Sci Eng 8(4):865–868
Tian J, Zheng Y, Zhu H et al (2005) A MPC and genetic algorithm based approach for multiple UAVs cooperative search[M] Computational Intelligence and Security. Springer, Berlin
Gupta P, Mehlawat MK, Mittal G (2013) A fuzzy approach to multicriteria assignment problem using exponential membership functions[J]. Int J Mach Learn Cybern 4(6):647–657
Shima T, Schumacher C (2009) Assignment of cooperating UAVs to simultaneous tasks using genetic algorithm [J]. J Oper Res Soc 2008(60):973–982
Mingyue D, Changwen Z, Chengping Z (2009) Unmanned aerial vehicle trajectory planning. Publishing House of Electronics Industry, Beijing
Salman A, Ahmad I, AI-Madani S (2002) Particle swarm optimization for task assignment problem [J]. Microprocess Microsyst 26(8):363–371
Sujit PB, George JM, Beard R (2008) Multiple UAV Task Allocation Using Particle Swarm Optimization [C]. In: AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, pp 18–21
Ho SY, Lin HS, Liauh WH et al (2008) OPSO: Orthogonal particle swarm optimization and its application to task assignment problems [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(2):288–298
Bo G, Shewei W, Jun T (2009) Cooperative task allocation for unmanned combat aerial vehicles using improved particle colony algorithm [J]. Comput Simul 26(7):62–64
Souravlias D, Parsopoulos KE (2014) Particle swarm optimization with neighborhood-based budget allocation. Int J Mach Learn Cybern, pp 1–27. doi:10.1007/s13042-014-0308-3
Dasgupta P (2008) A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles [J]. IEEE Trans Syst Man Cybern Part A Syst Hum 38(3):549–563
Fei S, Yan C, Lincheng S (2008) UAV cooperative multi-task assignment based on ant colony algorithm [J]. Acta Aeronaut Astronaut Sin 29(S1):184–191
Chang WL, Zeng D, Chen RC et al (2013) An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. Int J Mach Learn Cybern, pp 1–9. doi:10.1007/s13042-013-0195-z
Jevtic A, Andina D, Jaimes A et al (2010) Unmanned aerial vehicle route optimization using ant system algorithm [C]. In: IEEE 2010 5th International Conference on System of Systems Engineering (SoSE), pp 1–6
Zhong L, Luo Q, Wen D et al (2013) A task assignment algorithm for multiple aerial Vehicles to attack targets with dynamic values [J]. IEEE Trans Intell Transp Syst 14(1):236–248
Zhu D, Huang H, Yang DX (2013) Dynamic task assignment and path planning of Multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace [J]. IEEE Trans Cybern 43(2):504–514
Gao Q, Zou H, Zhang X et al (2013) New relaxation algorithm for three-dimensional assignment problem [c]. In: IEEE Conference Anthology. IEEE, China, pp 1–4
Engelbrecht AP (2010) Computational intelligence: an introduction[M]. Tsinghua University Press, Beijing Tan Ying translation
Onwubolu G, Davendra D (2009) Differential Evolution for Permutation-Based Combinatorial Problems [M]. Springer, Berlin
Mezura ME, Velzquez RJ, Coello CA (2006) A comparative study of differential evolution variants for global optimization[C]. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 485–492
Min S, Ruixuan W, Zhiming F (2010) Cooperative task assignment for heterogeneous multi-uavs based on differential evolution algorithm [J]. J Syst Simul 22(7):1706–1710
Zhao MS, Xiaohong MP, Lingling Z (2012) A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions [J]. Acta Autom Sin 38(12):2038–2048
Storn R, Price K (1997) Differential evolution A simple and efficient heuristic for global optimization over continuous spaces [J]. J Glob Optim 11(4):341–359
Otani T, Suzuki R, Arita T (2013) DE/isolated/1: a new mutation operator for multimodal optimization with differential evolution[J]. Int J Mach Learn Cybern 4(2):99–105
Epitropakis MG, Tasoulis DK, Pavlidis NG et al (2011) Enhancing differential evolution utilizing proximity-based mutation operators [J]. IEEE Trans Evol Comput 15(1):99–119
Zamuda A, Brest J, Boskovic B et al (2008) Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution [C]. In: IEEE Congress on Evolutionary Computation CEC 2008. (IEEE World Congress on Computational Intelligence), IEEE pp 3718–3725
Acknowledgments
The authors would like to thank the national natural science funds of China: 61175027, 61305013, and the fundamental research funds for the central universities HIT.NSRIF.2015069.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ming, Z., Lingling, Z., Xiaohong, S. et al. Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model. Int. J. Mach. Learn. & Cyber. 8, 765–780 (2017). https://doi.org/10.1007/s13042-015-0364-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-015-0364-3