Abstract
This paper deals with the local analysis of systems of pseudo-linear equations. We define regular solutions and use this as a unifying theoretical framework for discussing the structure and existence of regular solutions of various systems of linear functional equations. We then give a generic and flexible algorithm for the computation of a basis of regular solutions. We have implemented this algorithm in the computer algebra system Maple in order to provide novel functionality for solving systems of linear differential, difference and q-difference equations given in various input formats.
Similar content being viewed by others
References
Abramov S.: Eg-eliminations. J. Differ. Equ. Appl. 5(4), 393–433 (1999)
Abramov, S.: Rational solutions of first order linear q-difference systems. In: Proceedings of FPSAC ’99. Barcelona, Spain, pp. 1–9 (1999)
Abramov S., Barkatou M.: Rational solutions of first order linear difference systems. In: Gloor, O. (ed.) Proceedings of ISSAC ’98, pp. 124–131. ACM Press, Rostock, Germany (1998)
Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proceedings of ISSAC ’01. ACM Press, UWO, Canada (2001)
Adams C.: On the linear ordinary q-difference equation. Ann. Math. 30(2), 195–205 (1929)
Andrews G., Askey R., Roy R.: Special Functions. Cambridge University Press, Cambridge (1999)
Barkatou, M.: Contribution à l’étude des équations différentielles et de différences dans le champ complexe. Ph.D. thesis, INPG (1989)
Barkatou M.: An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system. J. Appl. Algebra Eng. Commun. Comput. 8(1), 1–23 (1997)
Barkatou M.: On rational solutions of systems of linear differential equations. J. Symb. Comput. 28, 547–567 (1999)
Barkatou, M.: Factoring systems of linear functional equations using eigenrings. In: Computer Algebra 2006, Latest Advances in Symbolic Algorithms. Proceedings of the Waterloo Workshop. Ontario, Canada (2006)
Barkatou, M., Broughton, G., Pflügel, E.: Regular systems of linear functional equations and applications. In: Proceedings of ISSAC ’08. ACM, New York, NY, USA, pp. 15–22 (2008)
Barkatou M., Chen G.: Computing the exponential part of a formal fundamental matrix solution of a linear difference system. J. Differ. Equ. Appl. 5, 117–142 (1999)
Barkatou M., Chen G.: Some formal invariants of linear difference systems and their computations. J. fur die reine und angew. Math. 553, 1–23 (2001)
Barkatou, M., Pflügel, E.: On the equivalence problem of linear differential systems and its application for factoring completely reducible systems. In: Proceedings of ISSAC ’98. ACM Press, Rostock, Germany, pp. 268–275 (1998)
Barkatou M., Pflügel E.: An algorithm computing the regular formal solutions of a system of linear differential equations. J. Symb. Comput. 28, 569–588 (1999)
Barkatou, M., Pflügel, E.: The ISOLDE package. A SourceForge Open Source project (2006). http://isolde.sourceforge.net
Barkatou, M., Pflügel, E.: Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: a new approach. In: Proceedings of ISSAC ’07. ACM Press, Waterloo, Canada, pp. 1–8 (2007)
Barkatou M.A., Pflügel E.: On the Moser- and super-reduction algorithms of systems of linear differential equations and their complexity. J. Symb. Comput. 44(8), 1017–1036 (2009)
Bronstein M., Petkovšek M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)
Harris W.: Linear systems of difference equations. Contrib. Differ. Equ. 1, 489–518 (1963)
Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)
Hilali A., Wazner A.: Formes super-irréductibles des systèmes différentiels linéaires. Numer. Math. 50, 429–449 (1987)
Jacobson N.: Pseudo-linear transformations. Ann. Math. 33(2), 484–507 (1937)
Moser, J.: The order of a singularity in Fuchs’ theory. Math. Z., 379–398 (1960)
Pflügel E.: Effective formal reduction of linear differential systems. Appl. Algebra Eng. Commun. Comput. 10(2), 153–187 (2000)
Trjitzinsky, W.: Analytic theory of linear q-difference equations. ACTA Math. 61(1) (1933)
Turritin H.: The formal theory of systems of irregular homogeneous linear difference equations. Boltin de la Soc. Mexicana 5, 255–264 (1960)
Wasow W.: Asymptotic Expansions for Ordinary Differential Equations. Krieger, Huntington (1967)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barkatou, M.A., Broughton, G. & Pflügel, E. A Monomial-by-Monomial Method for Computing Regular Solutions of Systems of Pseudo-Linear Equations. Math.Comput.Sci. 4, 267–288 (2010). https://doi.org/10.1007/s11786-010-0056-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-010-0056-z