iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11786-010-0056-Z
A Monomial-by-Monomial Method for Computing Regular Solutions of Systems of Pseudo-Linear Equations | Mathematics in Computer Science Skip to main content
Log in

A Monomial-by-Monomial Method for Computing Regular Solutions of Systems of Pseudo-Linear Equations

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

This paper deals with the local analysis of systems of pseudo-linear equations. We define regular solutions and use this as a unifying theoretical framework for discussing the structure and existence of regular solutions of various systems of linear functional equations. We then give a generic and flexible algorithm for the computation of a basis of regular solutions. We have implemented this algorithm in the computer algebra system Maple in order to provide novel functionality for solving systems of linear differential, difference and q-difference equations given in various input formats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov S.: Eg-eliminations. J. Differ. Equ. Appl. 5(4), 393–433 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abramov, S.: Rational solutions of first order linear q-difference systems. In: Proceedings of FPSAC ’99. Barcelona, Spain, pp. 1–9 (1999)

  3. Abramov S., Barkatou M.: Rational solutions of first order linear difference systems. In: Gloor, O. (ed.) Proceedings of ISSAC ’98, pp. 124–131. ACM Press, Rostock, Germany (1998)

    Chapter  Google Scholar 

  4. Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proceedings of ISSAC ’01. ACM Press, UWO, Canada (2001)

  5. Adams C.: On the linear ordinary q-difference equation. Ann. Math. 30(2), 195–205 (1929)

    Google Scholar 

  6. Andrews G., Askey R., Roy R.: Special Functions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Barkatou, M.: Contribution à l’étude des équations différentielles et de différences dans le champ complexe. Ph.D. thesis, INPG (1989)

  8. Barkatou M.: An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system. J. Appl. Algebra Eng. Commun. Comput. 8(1), 1–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barkatou M.: On rational solutions of systems of linear differential equations. J. Symb. Comput. 28, 547–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barkatou, M.: Factoring systems of linear functional equations using eigenrings. In: Computer Algebra 2006, Latest Advances in Symbolic Algorithms. Proceedings of the Waterloo Workshop. Ontario, Canada (2006)

  11. Barkatou, M., Broughton, G., Pflügel, E.: Regular systems of linear functional equations and applications. In: Proceedings of ISSAC ’08. ACM, New York, NY, USA, pp. 15–22 (2008)

  12. Barkatou M., Chen G.: Computing the exponential part of a formal fundamental matrix solution of a linear difference system. J. Differ. Equ. Appl. 5, 117–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barkatou M., Chen G.: Some formal invariants of linear difference systems and their computations. J. fur die reine und angew. Math. 553, 1–23 (2001)

    Article  MathSciNet  Google Scholar 

  14. Barkatou, M., Pflügel, E.: On the equivalence problem of linear differential systems and its application for factoring completely reducible systems. In: Proceedings of ISSAC ’98. ACM Press, Rostock, Germany, pp. 268–275 (1998)

  15. Barkatou M., Pflügel E.: An algorithm computing the regular formal solutions of a system of linear differential equations. J. Symb. Comput. 28, 569–588 (1999)

    Article  MATH  Google Scholar 

  16. Barkatou, M., Pflügel, E.: The ISOLDE package. A SourceForge Open Source project (2006). http://isolde.sourceforge.net

  17. Barkatou, M., Pflügel, E.: Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: a new approach. In: Proceedings of ISSAC ’07. ACM Press, Waterloo, Canada, pp. 1–8 (2007)

  18. Barkatou M.A., Pflügel E.: On the Moser- and super-reduction algorithms of systems of linear differential equations and their complexity. J. Symb. Comput. 44(8), 1017–1036 (2009)

    Article  MATH  Google Scholar 

  19. Bronstein M., Petkovšek M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)

    Article  MATH  Google Scholar 

  20. Harris W.: Linear systems of difference equations. Contrib. Differ. Equ. 1, 489–518 (1963)

    Google Scholar 

  21. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  22. Hilali A., Wazner A.: Formes super-irréductibles des systèmes différentiels linéaires. Numer. Math. 50, 429–449 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jacobson N.: Pseudo-linear transformations. Ann. Math. 33(2), 484–507 (1937)

    Article  Google Scholar 

  24. Moser, J.: The order of a singularity in Fuchs’ theory. Math. Z., 379–398 (1960)

  25. Pflügel E.: Effective formal reduction of linear differential systems. Appl. Algebra Eng. Commun. Comput. 10(2), 153–187 (2000)

    Article  MATH  Google Scholar 

  26. Trjitzinsky, W.: Analytic theory of linear q-difference equations. ACTA Math. 61(1) (1933)

  27. Turritin H.: The formal theory of systems of irregular homogeneous linear difference equations. Boltin de la Soc. Mexicana 5, 255–264 (1960)

    Google Scholar 

  28. Wasow W.: Asymptotic Expansions for Ordinary Differential Equations. Krieger, Huntington (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay A. Barkatou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkatou, M.A., Broughton, G. & Pflügel, E. A Monomial-by-Monomial Method for Computing Regular Solutions of Systems of Pseudo-Linear Equations. Math.Comput.Sci. 4, 267–288 (2010). https://doi.org/10.1007/s11786-010-0056-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0056-z

Keywords

Navigation