iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11760-017-1170-Z
Backtracking search algorithm for color image multilevel thresholding | Signal, Image and Video Processing Skip to main content
Log in

Backtracking search algorithm for color image multilevel thresholding

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Multilevel thresholding of the color images such as natural and satellite images becomes a challenging task due to the inherent fuzziness and ambiguity in such images. To address this issue, a modified fuzzy entropy (MFE) function is proposed in this paper. MFE function is the difference of adjacent entropies, which is optimized to provide thresholding levels such that all regions have almost equal entropies. To improve the performance of MFE, backtracking search algorithm is used. The numerical and statistical results indicate that MFE-BSA has higher peak signal-to-noise ratio, lower mean square error for all the images at different thresholding levels. Moreover, structural and feature similarity indices for MFE-BSA are closer to unity and the average fitness value obtained using MFE-BSA is minimum (lesser than 0.5). Overall, MFE-BSA shows very good segmentation results in terms of preciseness, robustness, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, Z., Tavares, J.M.R., Renato, M., Jorge, N.: A review on the current segmentation algorithms for medical images. In: 1st International Conference on Imaging Theory and Applications, IMAGAPP’2009, pp. 135–140 (2009)

  2. Oliveira, R.B., Mercedes Filho, E., Ma, Z., Papa, J.P., Pereira, A.S., Tavares, J.M.R.: Computational methods for the image segmentation of pigmented skin lesions: a review. Comput. Methods Progr. Biomed. 131, 127–141 (2016)

    Article  Google Scholar 

  3. Ma, Z., Tavares, J.M.R.: A review of the quantification and classification of pigmented skin lesions: from dedicated to hand-held devices. J. Med. Syst. 39(11), 177 (2015)

    Article  Google Scholar 

  4. Jodas, D.S., Pereira, A.S., Tavares, J.M.R.: A review of computational methods applied for identification and quantification of atherosclerotic plaques in images. Expert Syst. Appl. 46, 1–14 (2016)

    Article  Google Scholar 

  5. Langari, B., Vaseghi, S., Prochazka, A., Vaziri, B., Aria, F.T.: Edge-guided image gap interpolation using multi-scale transformation. IEEE Trans. Image Proc. 25(9), 4394–4405 (2016)

    Article  MathSciNet  Google Scholar 

  6. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  7. Sezgin, M.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  8. Kurban, T., Civicioglu, P., Kurban, R., Besdok, E.: Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding. Appl. Soft Comput. 23, 128–143 (2014)

    Article  Google Scholar 

  9. Sağ, T., Çunkaş, M.: Color image segmentation based on multi-objective artificial bee colony optimization. Appl. Soft Comput. 34, 389–401 (2015)

    Article  Google Scholar 

  10. Tang, K., Xiao, X., Wu, J., Yang, J., Luo, L.: An improved multilevel thresholding approach based modified bacterial foraging optimization. Appl. Intell. 46(1), 214–226 (2017)

    Article  Google Scholar 

  11. Beevi, S., Nair, M.S., Bindu, G.R.: Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and localized active contour model. Biocybern. Biomed. Eng. 36(4), 584–596 (2016)

    Article  Google Scholar 

  12. Yin, P.Y., Wu, T.H.: Multi-objective and multi-level image thresholding based on dominance and diversity criteria. Appl. Soft Comput. 54, 62–73 (2017)

    Article  Google Scholar 

  13. He, L., Huang, S.: Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240, 15–174 (2017)

    Article  Google Scholar 

  14. Dey, S., Bhattacharyya, S., Maulik, U.: New quantum inspired meta-heuristic techniques for multi-level colour image thresholding. Appl. Soft Comput. 46, 677–702 (2016)

    Article  Google Scholar 

  15. Dey, S., Bhattacharyya, S., Maulik, U.: Efficient quantum inspired meta-heuristics for multi-level true colour image thresholding. Appl. Soft Comput. 56, 472–513 (2017)

    Article  Google Scholar 

  16. Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)

    Article  Google Scholar 

  17. Bhandari, A.K., Kumar, A., Singh, G.K.: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst. Appl. 42(3), 1573–1601 (2015)

    Article  Google Scholar 

  18. Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K., Khare, S.: Satellite image segmentation based on different objective functions using genetic algorithm: a comparative study. In: IEEE International Conference on Digital Signal Processing (DSP), pp. 730–734 (2015)

  19. Sarkar, S., Das, S., Chaudhuri, S.S.: Hyper-spectral image segmentation using Rényi entropy based multi-level thresholding aided with differential evolution. Expert Syst. Appl. 50, 120–129 (2016)

    Article  Google Scholar 

  20. Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl. Soft Comput. (2017). doi:10.1016/j.asoc.2017.08.039

    Google Scholar 

  21. Bhandari, A.K., Kumar, A., Chaudhary, S., Singh, G.K.: A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst. Appl. 63, 112–133 (2016)

    Article  Google Scholar 

  22. Bhandari, A.K., Kumar, A., Singh, G.K.: Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst. Appl. 42(22), 8707–8730 (2015)

    Article  Google Scholar 

  23. Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl. Soft Comput. 47, 76–102 (2016)

    Article  Google Scholar 

  24. Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K.: An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst. App. 87(30), 335–362 (2017)

  25. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Guney, K., Durmus, A.: Pattern nulling of linear antenna arrays using backtracking search optimization algorithm. Int. J. Antennas. Propag. 2015, 1–10 (2015). doi:10.1155/2015/713080

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pare, S., Bhandari, A.K., Kumar, A. et al. Backtracking search algorithm for color image multilevel thresholding. SIViP 12, 385–392 (2018). https://doi.org/10.1007/s11760-017-1170-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1170-z

Keywords

Navigation