iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11760-017-1155-Y
Block-based image fusion using multi-scale analysis to enhance depth of field and dynamic range | Signal, Image and Video Processing Skip to main content
Log in

Block-based image fusion using multi-scale analysis to enhance depth of field and dynamic range

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A novel technique for integrating information by exploring multi-scale positions with block-based fusion and to address blocking effects is discussed in the present manuscript. The source images are split into local and global layers using neighbor distance filter by extracting information at multi-scale positions. Recombined local and global layers are constructed using block-based and weighted average methods, respectively. The spatial frequency as well as exposedness factor is used to find the texture information and exposure level for respective blocks. Resulting local and global layers are then fused to generate final fused image. The method is applicable to any number of source images. Extensive experimental results are provided to show the effectiveness of proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goshtasby, A.A., Nikolov, S.: Image fusion: advances in the state of the art. Inf. Fusion 8(2), 114–118 (2007)

    Article  Google Scholar 

  2. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. IEEE Proc. 85(1), 6–23 (1997)

    Article  Google Scholar 

  3. Varshney, P.K.: Multisensor data fusion. Electron. Commun. Eng. J. 9(6), 245–253 (1997)

    Article  Google Scholar 

  4. Pajares, G., Cruz, J.M.: A wavelet based image fusion tutorial. Pattern Recognit. 37(9), 1855–1872 (2004)

    Article  Google Scholar 

  5. Tessens, L., Ledda, A., Pizurica, A., Philips, W.: Extending the depth of field in microscopy through curvelet based frequency adaptive image fusion. In: IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP—2007, pp. 861–864 (2007)

  6. Perlman, P.: Basic Microscope Techniques. Chemical Publishing Company, New York (1971)

    Google Scholar 

  7. Mann, S., Picard, R.W.: Being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: IS & T Proceedings 46th Annual Conference, pp. 422–428 (1995)

  8. De, I., Chanda, B., Chattopadhyay, B.: Enhancing effective depth of field by image fusion using mathematical morphology. Image Vis. Comput. 24(12), 1278–1287 (2006)

    Article  Google Scholar 

  9. Li, S., Yang, B.: Multi-focus image fusion using region segmentation and spatial frequency. Image Vis. Comput. 26(7), 971–979 (2008)

    Article  Google Scholar 

  10. Bai, X., Gu, S., Zhou, F., Xue, B.: Weighted image fusion based on multi-scale top-hat transform: algorithms and comparison study. Optik 124, 1660–1668 (2013)

    Article  Google Scholar 

  11. Li, S., Kwok, J.T., Wang, Y.: Combination of images with diverse focuses using the spatial frequency. Inf. Fusion 2(3), 169–176 (2001)

    Article  Google Scholar 

  12. Li, S., Kwok, J.T., Wang, Y.: Multifocus image fusion using artificial neural networks. Pattern Recognit. Lett. 23(8), 985–997 (2002)

    Article  MATH  Google Scholar 

  13. Miao, Q., Wang, B.: A novel adaptive multi-focus image fusion algorithm based on PCNN and sharpness. In: Proceedings of SPIE, pp. 704–712 (2005)

  14. Huang, W., Jing, Z.: Multi-focus image fusion using pulse coupled neural network. Pattern Recognit. Lett. 28(9), 1123–1132 (2007)

    Article  Google Scholar 

  15. Zhang, Y., Ge, L.: Efficient fusion scheme for multi focus images by using blurring measure. Digit. Signal Process. 19(2), 186–193 (2009)

    Article  MathSciNet  Google Scholar 

  16. De, I., Chanda, B.: Multi-focus image fusion using morphology based focus measure in a quad-tree structure. Inf. Fusion 14(2), 136–146 (2013)

    Article  Google Scholar 

  17. Paul, S., Sevcenco, I.S., Agathoklis, P.: Multi-exposure and multi-focus image fusion in gradient domain. J. Circuits Syst. Comput. (2016). doi:10.1142/S0218126616501231

    Google Scholar 

  18. Zhao, C., Guo, Y., Wang, Y.: A fast fusion scheme for infrared and visible light images in NSCT. Infrared Phys. Technol. 72(1), 266–275 (2015)

    Article  Google Scholar 

  19. Zhang, Q., Maldague, X.: An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing. Infrared Phys. Technol. 74(1), 11–20 (2016)

    Article  Google Scholar 

  20. Tang, J.: A contrast based image fusion technique in the DCT domain. Digit. Signal Process. 14(3), 218–226 (2004)

    Article  Google Scholar 

  21. Cao, L., et al.: Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. IEEE Signal Process. Lett. 22(2), 220–224 (2015)

    Article  Google Scholar 

  22. Mitianoudis, N., Stathaki, T.: Adaptive image fusion using ICA bases. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 829–832 (2006)

  23. Saha, A., Bhatnagar, G., Wu, Q.M.J.: Mutual spectral residual approach for multi-focus image fusion. Digit. Signal Process. 23(4), 1121–1135 (2013)

    Article  MathSciNet  Google Scholar 

  24. Piella, G.: A general framework for multiresolution image fusion: from pixels to regions. Inf. Fusion 4(4), 259–280 (2004)

    Article  Google Scholar 

  25. Petrovic, V.S., Xydeas, C.S.: Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 13(2), 228–237 (2004)

    Article  MATH  Google Scholar 

  26. Toet, A., Ruyven, L.J., Valeton, J.M.: Merging thermal and visual images by a contrast pyramid. Opt. Eng. 28(7), 789–792 (1989)

  27. Toet, A.: Image fusion by a ratio of low pass pyramid. Pattern Recognit. Lett. 9(4), 245–253 (1989)

    Article  MATH  Google Scholar 

  28. Burt, B.T., Andelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  29. Naidu, V.P.S.: Image fusion technique using multi-resolution singular value decomposition. Def. Sci. J. 61(5), 479–484 (2011)

    Article  MathSciNet  Google Scholar 

  30. Yang, L., Guo, B. L., Ni, W.: Multi focus image fusion algorithm based on contourlet decomposition and region statistics. In: International Conference on Image and Graphics, pp. 707–712 (2007)

  31. Zhang, Q., Guo, B.L.: Multi-focus image fusion using the non-subsampled contourlet transform. Signal Process. 89(7), 1334–1346 (2009)

    Article  MATH  Google Scholar 

  32. Goshtasby, A.A.: Fusion of multi-exposure images. Image Vis. Comput. 23(6), 611–618 (2005)

    Article  Google Scholar 

  33. Zafar, I., Edirisinghe, E.A., Bez, H.E.: Multi-exposure and multi-focus image fusion in transform domain. In: IET International Conference on Visual Information Engineering, pp. 606–611 (2006)

  34. Mertens, T., Kautz, J., Reeth, F. V.: Exposure fusion. In: IEEE International Conference on Computer Graphics and Applications, pp. 382–390 (2007)

  35. Raman, S., Chaudhuri, S.: Bilateral filter based compositing for variable exposure photography. In: Proceedings of the Eurographics, pp. 1–4 (2009)

  36. Jo, K., Vavilin, A.: HDR image generation based on intensity clustering and local feature analysis. Comput. Hum. Behav. 27, 1507–1511 (2011)

    Article  Google Scholar 

  37. Li, S., Kang, X.: Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 58(2), 626–632 (2012)

    Article  Google Scholar 

  38. Shen, J., Zhao, Y., Yan, S., Li, X.: Exposure fusion using boosting Laplacian pyramid. IEEE Trans. Cybern. 44(9), 1579–1590 (2014)

    Article  Google Scholar 

  39. Song, M., Tao, D., Chen, C., Bu, J., Luo, J., Zhang, C.: Probabilistic exposure fusion. IEEE Trans. Image Process. 21(1), 341–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, H., Shang, Z., Tang, Y.Y., Fang, B.: Multi-focus image fusion based on the neighbor distance. Pattern Recognit. 46(3), 1002–1011 (2013)

    Article  Google Scholar 

  41. http://in.mathworks.com/matlabcentral/fileexchange/48782-multi-exposure-and-multi-focus-image-fusion-in-gradient-domain. Available online

  42. Richardson, I.E.: The H.264 Advanced Video Compression Standard. Wiley, New York (2010)

    Book  Google Scholar 

  43. Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electron. Lett. 38(7), 313–315 (2002)

    Article  Google Scholar 

  44. Xydes, C.S., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

  45. Han, Y., Cai, Y., Cao, Y., Xu, X.: A new image fusion performance metric based on visual information fidelity. Inf. Fusion 14(2), 127–135 (2013)

    Article  Google Scholar 

  46. http://in.mathworks.com/matlabcentral/fileexchange/38802-image-fusion-technique-using-multi-resolution-singular-value-decomposition. Available online

  47. “Old academic page” at http://www.mericam.net/

  48. http://in.mathworks.com/matlabcentral/fileexchange/43051-multifocus-and-multispectral-image-fusion-based-on-pixel-significance-using-dchwt?focused=3793307&tab=func

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Chaudhary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 343 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, V., Kumar, V. Block-based image fusion using multi-scale analysis to enhance depth of field and dynamic range. SIViP 12, 271–279 (2018). https://doi.org/10.1007/s11760-017-1155-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1155-y

Keywords

Navigation