iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11590-008-0095-4
Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem | Optimization Letters Skip to main content
Log in

Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We use reformulation techniques to model and solve a complex sphere covering problem occurring in the configuration of a gamma ray machine radiotherapy equipment unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audet C., Hansen P., Jaumard B., Savard G.: Links between linear bilevel and mixed 0-1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brook A., Kendrick D., Meeraus A.: Gams, a user’s guide. ACM SIGNUM Newsl. 23(3-4), 10–11 (1988)

    Article  Google Scholar 

  3. Ferris, M., Shepard, D.: Optimization of gamma knife radiosurgery. In: Du, D.Z., Pardalos, P., Wang, J., (eds.) Discrete Mathematical Problems with Medical Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 55, pp. 27–44. AMS (2000)

  4. Ferris M., Voelker M.: Neuro-dynamic programming for radiation treatment planning. Ann. Oper. Res. 119, 247–260 (2003)

    Article  MATH  Google Scholar 

  5. Ferris M., Lim J., Shepard D.: An optimization approach for the radiosurgery treatment planning. SIAM J. Optim. 13(3), 921–937 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Floudas C.: Deterministic Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. Fortet R.: Applications de l’algèbre de boole en recherche opérationelle. Revue Française de Recherche Opérationelle 4, 17–26 (1960)

    Google Scholar 

  8. Fourer R., Gay D.: The AMPL Book. Duxbury, Pacific Grove (2002)

    Google Scholar 

  9. ILOG: ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France (2006)

  10. Jitprapaikulsarn, S.: An optimization-based treatment planner for gamma knife radiosurgery. Ph.D. Thesis, Case Western Reserve University (2005)

  11. Leyffer S.: User Manual for minlp_bb. Technical Report, University of Dundee, UK (1999)

  12. Liberti, L.: Writing global optimization software. In: Liberti and Maculan [16], pp. 211–262 (2006)

  13. Liberti L.: Compact linearization of binary quadratic problems. 4OR 5(3), 231–245 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liberti, L.: Reformulation techniques in mathematical programming. Thèse d’Habilitation à Diriger des Recherches (2007)

  15. Liberti, L., Dražic, M.: Variable neighbourhood search for the global optimization of constrained nlps. In: Proceedings of GO Workshop, Almeria, Spain (2005)

  16. Liberti, L.,Maculan, N. (eds.): Global Optimization: from Theory to Implementation. Springer, Berlin (2006)

  17. Lim, J.: Optimization in radiation treatment planning. Ph.D. Thesis, University of Wisconsin-Madison (2002)

  18. Olafsson A., Wright S.: Linear programming formulations and algorithms for radiotherapy treatment planning. Optim. Methods Softw. 21(2), 201–231 (2004)

    Article  MathSciNet  Google Scholar 

  19. Soutou A., Dai Y.: Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114(3), 671–694 (2002)

    Article  MathSciNet  Google Scholar 

  20. Tawarmalani M., Sahinidis N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberti, L., Maculan, N. & Zhang, Y. Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem. Optim Lett 3, 109–121 (2009). https://doi.org/10.1007/s11590-008-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-008-0095-4

Keywords

Navigation