iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11554-009-0117-1
Sorting of rice grains using Zernike moments | Journal of Real-Time Image Processing Skip to main content

Advertisement

Log in

Sorting of rice grains using Zernike moments

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Two important factors that determine the efficiency and reliability of a rice sorting machine are the overall processing speed and the classification accuracy. In this paper, an efficient rice sorting process which uses a subset of Zernike moments (ZM) and a multilayer perceptron is presented. Since the falling rice grains during sorting process can be in any orientation, a rotational invariant feature set is crucial in this application. Hence, the set of ZM with its inherent rotational invariance property is chosen in this context. Nevertheless, one of the main drawbacks of ZM in real-time application is its long computation time. To overcome this, a subset of ZM is selected from its original full set of 12 orders, using the combination of fuzzy ARTMAP and genetic algorithm. To further reduce the computation time, the combination of q-recursive method and Zernike polynomials’ inherent symmetry property is utilized. Hence, the processing time of the subset of ZM is significantly reduced by almost 67% while maintaining the classification accuracy as compared to computing the original full set of ZMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Belkasim, S.O, Ahmadi, M., Shridhar, M.: Efficient algorithm for fast computation of zernike moments. In: Proceedings of IEEE 39th Midwest Symposium on Circuit and Systems, vol. 3, pp. 1401–1404 (1997)

  2. Carpenter, G.A.: Distributed learning, recognition, and prediction by art and artmap neural networks. Neural Netw. 10(2), 1473–1494 (1997)

    Article  MathSciNet  Google Scholar 

  3. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimentional maps. IEEE Trans. Neural Netw. 3(5), 698–713 (1992)

    Article  Google Scholar 

  4. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: A fuzzy artmap nonparametric probability estimator for nonstationary pattern recognition problems. IEEE Trans. Neural Netw. 6(6), 1330–1336 (1995)

    Article  Google Scholar 

  5. Chong, C.W. Mukundan, R., Raveendran, P.: An efficient algorithm for fast computation of zernike moments. In: Proceedings of International Conference on Computer Vision, Pattern Recognition and Image Processing, pp 785–788, Durham, North Carolina (2002)

  6. Chong, C.W., Raveendran, P., Mukundan, R.: A comparative analysis of algorithm for fast computation of zernike moments. Pattern Recognit. 36(3), 731–742 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chong, C.-W.: A Formulation of A New Class of Continuous Orthogonal Moment Invariants, and the Analysis of Their Computational Aspects. Dissertation, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia (2003)

  8. Chong, C.W., Raveendran, P., Mukundan, R.: Translation invariants of zernike moments. Pattern Recognit. 36(8), 1765–1773 (2003)

    Article  MATH  Google Scholar 

  9. Gen, M., Cheng, R.: Genetics algorithms & engineering optimization. Wiley, New York (2000)

    Google Scholar 

  10. Ghosal, S., Mehrotra, R.: Edge detection using orthogonal moment-based operators. In: Proceedings of 11th Image, Speech and Signal Analysis (IAPR) International Conference on Pattern Recognition, vol. III, pp. 413–416 (1992)

  11. Ghosal, S., Mehrotra, R.: Segmentation of range images: an orthogonal moment-based integrated approach. IEEE Trans. Robotics Autom. 9(4), 385–39 (1993)

    Article  Google Scholar 

  12. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  13. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  15. Iskander, D.R., Morelande, M.R. Collins, M.J., Davis, B.: Modelling of corneal surfaces with radial polynomials. IEEE Trans. Biomed. Eng. 49(4), 320–328 (2002)

    Article  Google Scholar 

  16. Khotanzad, A.: Rotation invariant pattern recognition using zernike moments. In: Proceedings of International Conference on Pattern Recognition, pp. 326–328 (1988)

  17. Khotanzad, A., Lu, J.H.: Classification of invariant image representations using a neural network. IEEE Trans. Acoust. Speech Signal Process. 38, 1028–1038 (1990)

    Article  Google Scholar 

  18. Khotanzand, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Patt. Anal. Mach. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  19. Kintner, E.C.: On the mathematical properties of the zernike polynomials. Opt. Acta 23(8):679–680 (1976)

    Google Scholar 

  20. Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Patt. Anal. Mach. Intell. 18(3), 254–266 (1996)

    Article  Google Scholar 

  21. Liao, S.X., Pawlak, M.: On the accuracy of zernike moments for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1358–1364 (1998)

    Article  Google Scholar 

  22. Mukundan, R., Ramakrishnan, K.R.: Moment functions in image analysis. World Scientific Publishing, Singapore (1998)

    MATH  Google Scholar 

  23. Prata, Jr A., Rusch, W.V.T.: Algorithm for computation of zernike polynomials expansion coefficients. Appl. Opt. 28(4), 749–754 (1989)

    Article  Google Scholar 

  24. Pawlak, M.: On the reconstruction aspect of moment descriptors. IEEE Trans. Inf. Theory 38(6), 1698–1708 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  26. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–512 (1988)

    Article  MATH  Google Scholar 

  27. van Rooij, A.J.F., Jain, L.J., Johnson, R.P.: Neural Network Training Using Genetic Algorithms, Machine Perception Artificial Intelligence, vol. 26. World Scientific, Singapore (1996)

  28. Wee, C.Y., Raveendran, P., Takeda, F.: New computation methods for full and subset zernike moments. Inf. Sci. 159(3–4), 203–220 (2004)

    Article  MATH  Google Scholar 

  29. Wee, C.Y. Raveendran, P. Takeda, F. Tsuzuki, T. Kadota, H., Shimanouchi, S.: Classification of rice grain using new scale invariant zernike moments. In: Proceedings of International Conference on Computer Vision, Pattern Recognition and Image Processing (CVPRIP’2002). Durham, South Carolina, USA (2002), pp. 832–835

  30. Wee, C.Y., Raveendran, P. Takeda, F. Tsuzuki, T. Kadota, H., Shimanouchi, S.: Feature reduction of zernike moments using genetic algorithm for neural network classification of rice grain. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2002), vol. 1, pp. 1013–1018, Hawaii, USA (2002)

  31. Wee, C.Y., Paramesran, R.: Efficient computation of radial moment functions using symmetrical property. Pattern Recognit. 39(11):2036–2046 (2006)

    Google Scholar 

  32. Wee, C.-Y., Paramesran, R., Takeda F.: Fast computation of zernike moments for rice sorting system. In: Proceedings of 2007 IEEE International Conference on Image Processing (ICIP 2007), vol. 6, pp. 165–168, San Antonio, Texas, USA (2007)

  33. Zernikem, F.: Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physical 7:689–701 (1934)

    Google Scholar 

Download references

Acknowledgment

The authors would like to extend their thanks to anonymous reviewers for the valuable and constructive comments for making this manuscript more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Yaw Wee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wee, CY., Paramesran, R. & Takeda, F. Sorting of rice grains using Zernike moments. J Real-Time Image Proc 4, 353–363 (2009). https://doi.org/10.1007/s11554-009-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-009-0117-1

Keywords

Navigation