iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11517-009-0489-1
Self-organizing map-based multi-thresholding on neural stem cells images | Medical & Biological Engineering & Computing Skip to main content
Log in

Self-organizing map-based multi-thresholding on neural stem cells images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Automatic segmentation and tracking systems can be useful tools for biologists to monitor and understand the proliferation and the differentiation of neural stem cells. This paper applied the self-organizing map-based multi-thresholding on the neural stem cells images. Using local variance as the local spatial feature and quadtree decomposition as the sub-sampling method, inner-cell regions, cell borders and background can be roughly classified. Based on these results, proper foreground and background seeds were constructed for the seeded watershed segmentation and every single cell in a cell cluster can be segmented correctly. The results were also compared to the seeded watershed segmentation based on regional maxima method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Althoff K, Degerman J, Gustavsson T (2005) Combined segmentation and tracking of neural stem-cells. Lect Notes Comput Sci 3540:282–291

    Article  Google Scholar 

  2. Althoff K, Degerman J, Gustavsson T (2005) Tracking neural stem cells in time-lapse microscopy image sequences. Proc SPIE 5747:1883–1891. doi:10.1117/12.594767

    Article  Google Scholar 

  3. Bengtsson E (2003) Computerized cell image analysis: past, present, and future. Lect Notes Comput Sci 2749:395–407

    Article  Google Scholar 

  4. Campos LS (2004) Neurospheres: insights into neural stem cell biology. J Neurosci Res 78:761–769. doi:10.1002/jnr.20333

    Article  Google Scholar 

  5. Gage HF (2000) Mammalian neural stem cells. Science 287:1433–1438. doi:10.1126/science.287.5457.1433

    Article  Google Scholar 

  6. Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  7. Kachouie NN, Fieguth P (2005) A narrow-band level-set method with dynamic velocity for neural stem cell cluster segmentation. Lect Notes Comput Sci 3656:1006–1013

    Article  Google Scholar 

  8. Laywell ED, Kukekov VG, Suslov O (2002) Production and analysis of neurospheres from acutely dissociated and postmortem CNS specimens. In: Zigova T (ed) Methods in molecular biology, vol. 198: Neural stem cells: methods and protocols. Humana Press, Totowa, pp 15–28

    Google Scholar 

  9. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096. doi:10.1038/nature04960

    Article  Google Scholar 

  10. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 10:S42–S50

    Article  Google Scholar 

  11. McKay R (1997) Stem cell in the central nervous system. Science 276:66–71. doi:10.1126/science.276.5309.66

    Article  Google Scholar 

  12. Papamarkos N (2003) A neuro-fuzzy technique for document binarisation. Neural Comput Appl 12:190–199. doi:10.1007/s00521-003-0382-z

    Article  Google Scholar 

  13. Papamarkos N, Atsalakis A (2000) Gray-level reduction using local spatial features. Comput Vis Image Underst 78:336–350. doi:10.1006/cviu.2000.0838

    Article  Google Scholar 

  14. Papamarkos N, Strouthopoulos C, Andreadis I (2000) Multithresholding of color and gray-level images through a neural network technique. Image Vis Comput 18:213–222. doi:10.1016/S0262-8856(99)00015-3

    Article  Google Scholar 

  15. Pinidiyaarachchi A, Wahlby C (2005) Seeded watersheds for combined segmentation and tracking of cells. Lect Notes Comput Sci 3617:336–343

    Article  Google Scholar 

  16. Reddi SS, Rudin SF, Keshavan HR (1984) An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 14:661–665

    Google Scholar 

  17. Shah-Hosseini H, Safabakhsh R (2002) Automatic multilevel thresholding for image segmentation by the growing time adaptive self-organizing map. IEEE Trans Pattern Anal Mach Intell 24:1388–1393. doi:10.1109/TPAMI.2002.1039209

    Article  Google Scholar 

  18. Shusterman E, Feder M (1994) Image compression via improved quadtree decomposition algorithms. IEEE Trans Image Process 3:207–215. doi:10.1109/83.277901

    Article  Google Scholar 

  19. Tang C, Bengtsson E (2005) Segmentation track neural stem cell. Lect Notes Comput Sci 3645:851–859

    Article  Google Scholar 

  20. Vincent L (1993) Morphological gray scale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201. doi:10.1109/83.217222

    Article  Google Scholar 

  21. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598. doi:10.1109/34.87344

    Article  Google Scholar 

  22. Wu K, Gauthier D, Levine MD (1995) Live cell image segmentation. IEEE Trans Biomed Eng 42:1–12. doi:10.1109/10.362924

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Shenzhen Key Laboratory Program of Health Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datian Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, X., Peng, C., Wang, X. et al. Self-organizing map-based multi-thresholding on neural stem cells images. Med Biol Eng Comput 47, 801–808 (2009). https://doi.org/10.1007/s11517-009-0489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0489-1

Keywords

Navigation