iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11277-021-08672-0
Enhancing Security in Multicasting with Partial Relay Selection Over Composite Fading Channels | Wireless Personal Communications Skip to main content
Log in

Enhancing Security in Multicasting with Partial Relay Selection Over Composite Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper elucidate the accomplishment of security in wireless multicasting through composite Rayleigh/log-normal shadowing channels under partial relay selection strategy. Same information is transmitted by a source, S to a set of M destination users via K relays, and N eavesdroppers situated nearby the users try to overhear the message. It is assumed that there are no ways of communication between source and destinations as well as eavesdroppers bypassing the relays. A routing scheme selects the best link between source and relays by tracing the dissonances in fading, path-loss and shadowing. Based on the probability density function of signal-to-noise ratio of the best relay link and taking into account the effects of distances from (i) source to relays and (ii) relays to destinations and eavesdroppers, the analytical expressions for the ergodic secrecy multicast capacity and the secure outage probability for multicasting have been derived for analyzing the performance of the proposed model. Our results disclose that the diversity created by the best relay link due to partial relay selection unquestionably enhances the security in multicasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amin, O., Mesleh, R., Ikki, S. S., Ahmed, M. H., & Dobre, O. A. (2014). Performance analysis of multiple relays cooperative systems with signal space diversity. IEEE Transaction on Vehicular Technology, 64(8), 3414–3425.

    Article  Google Scholar 

  2. Chu, S., Wang, X., & Yang, Y. (2012). Exploiting cooperative relay for high performance communications in MIMO ad hoc networks. IEEE Transaction on Computers, 62(4), 716–729.

    MathSciNet  MATH  Google Scholar 

  3. Vashistha, A., Sharma, S., & Bohara, V. A. (2015). Outage analysis of a multiple antenna cognitive radio system with cooperative decode-and-forward relaying. IEEE Communications Letters, 4(2), 125–128.

    Article  Google Scholar 

  4. Moharrer, H., Olfat, A., & Beaulieu, N. C. (2015). Cooperative beamforming for two-hop multi-relay decode-and-forward networks. IEEE Transaction on Communications, 63(9), 3143–3156.

    Article  Google Scholar 

  5. Sarker, D. K., Sarkar, M. Z. I., & Anower, M. S. (2017). Secure wireless multicasting with linear equalization. Physical Communication, 25(1), 201–213.

    Article  Google Scholar 

  6. Crawford, J., & Ko, Y. (2017). Cooperative OFDM-IM Relay Networks with Partial Relay Selection under Imperfect CSI, IEEE Transactions on Vehicular Technology, (Early Access), pp. 1–8.

  7. Crawford, J., & Ko, Y. (2017). Partial Relay Selection and Energy Detection for MCIM based Dual-Hop Multiple DF Relay Network. In: Proceedings of 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5.

  8. Balti, E., Guizani, M., Hamdaoui, B., & Maalej, Y. (2016). Partial Relay Selection for Hybrid RF/FSO Systems with Hardware Impairments. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), (pp. 1–6).

  9. Duong, T. Q., & Zepernick, H-J. (2009). On the Ergodic Capacity of Cooperative Spatial Multiplexing Systems in Composite channels. In: Proceedings of IEEE Radio and Wireless Symposium (RWS 2009), (pp. 175–178).

  10. Duy, T. T., & Kong, H. Y. (2014). On Performance Evaluation of Hybrid Decode-Amplify-Forward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks. Journal of Communications and Networks, 16(5), 502–511.

    Article  Google Scholar 

  11. Lee, I. H. (2012). Outage Performance of Efficient Partial Relay Selection in Amplify-and-Forward Relaying Systems over Rayleigh Fading Channels. IEEE Communications Letters, 16(10), 1644–1647.

    Article  Google Scholar 

  12. Lee, I. H., & Lee, S. (2014). Bit error probability of decode-and-forward relaying with efficient partial relay selection in non-identical Rayleigh fading channels. IET Communications, 8(15), 2624–2632.

    Article  Google Scholar 

  13. Lee, S., Da Costa, D. B., Vein, Q.-T., Duong, T. Q., & De Sousa, R. T., Jr. (2017). Non-orthogonal multiple access schemes with partial relay selection. IET Communications, 11(6), 846–854.

    Article  Google Scholar 

  14. Chu, S.-I., Lien, C.-Y., & Chiu, C.-L. (2016). Performance of switching-based partial relay selection scheme for amplify-and-forward cognitive relay networks. IET Communications, 10(12), 1480–1492.

    Article  Google Scholar 

  15. Ho-Van, K. (2016). Exact outage analysis of modified partial relay selection in cooperative cognitive networks under channel estimation errors. IET Communications, 10(2), 219–226.

    Article  Google Scholar 

  16. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and-Forward with Partial Relay Selection. IEEE Communications Letters, 12(4), 235–237.

    Article  Google Scholar 

  17. Som, P., & Chokalingam, A. (2014). Decode-and-forward cooperative multicast with space shift keying. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2014), (pp. 689–694).

  18. Lim, S. H., Kim, K. T., & Kim, Y.-H. (2014). Distributed decode-forward for multicast. In: Proceedings of IEEE Int. Symp. on Information Theory (ISIT 2014), (pp. 636–640).

  19. Chattha, J., & Uppal, M. (2016). Layered multiplexed-coded relaying in wireless multicast using QAM transmissions. IEEE Communications Letters, 20(4), 760–763.

    Article  Google Scholar 

  20. Jhou, Y., Pan, G., Li, T., Tang, C., & Chen, Y. (2015). Secrecy outage performance for partial relay selection schemes in cooperative systems. IET Communications, 9(16), 1980–1987.

    Article  Google Scholar 

  21. Fan, L., Zhao, R., Gong, F.-K., Yang, N., & Karagiannidis, G. K. (2017). Secure Multiple Amplify-and-Forward Relaying over Correlated Fading Channels. IEEE Transactions on Communications, 65(7), 2811–2820.

    Article  Google Scholar 

  22. Xu, Z., & Nguyen, N. P. (2018). Securing Full-Duplex Cognitive Relay Network over Nakagami-m Fading Channels with Partial Relay Selection. In: Proceedings of IEEE 2nd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), pp. 182–186.

  23. Bao, V. N. Q., Bac, D. H., Cuong, L. Q., Phu, L. Q., & Thuan, T. D. (2011). Performance analysis of partial relay selection with multiantenna destination cooperation. In: Proceedings of IEEE International Conference on ICT Convergence (ICTC), (pp. 101–105).

  24. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  25. Park, M., Chae, C-B., & Heath Jr., R. W. (2007). Ergodic Capacity of Spatial Multiplexing MIMO Systems with ZF Receivers for Log-normal Shadowing and Rayleigh Fading Channels. In: Proceedings of IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07), (pp. 1–5).

  26. Hasna, M. O., & Alouini, M.-S. (2003). End-to-End Performance of Transmission Systems With Relays Over Rayleigh-Fading Channels. IEEE Transections on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

  27. Mehta, N. B., Wu, J., Molisch, A. F., & Zhang, J. (2007). Approximating a sum of random variables with a lognormal. IEEE Transections on Wireless Communications, 6(7), 2690–2699.

    Article  Google Scholar 

  28. Simon, M. K., & Alouini, M.-S. (2005). Digital Communication over Fading Channels (2nd ed.). New Jersey, USA: Wiley.

    Google Scholar 

  29. Ambramowitz, M., & Stegum, A. (1970). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (9th ed.). New York: Dover Press.

    Google Scholar 

  30. Sarkar, M. Z. I. & Ratnarajah, T. (2011). Secure wireless multicasting through Nakagami-m fading MISO channel. In: Proceedings of IEEE 45th Asilomar Conf. on Signals, Systems and Computers (ASILOMAR 2011), (pp. 300–304).

  31. Goldsmith, A. (2005). Wireless Communications (5th ed.). Stanford University Press.

    Book  Google Scholar 

  32. Sarker, D. K., Sarkar, M. Z. I., & Anower, M. S. (2020). Secure Wireless Multicasting through AF-Cooperative Networks with Best-Relay Selection over Generalized Fading Channels. Wireless Networks, 26(3), 1717–1730.

    Article  Google Scholar 

  33. Datta, R., Gurjar, D. S., Reddy, T. K. M., Chaupal, S. K., Mandloi, M., & Hossain, A. (2020). Secrecy Performance of Amplify-and-Forward Relay Networks with Relay Selection under Nakagami-m Fading. Wireless Personal Communications, 112, 2233–2251. https://doi.org/10.1007/s11277-020-07147-y.

    Article  Google Scholar 

  34. Badrudduza, A. S. M., Sarkar, M. Z. I., & Kundu, M. K. (2020). Enhancing security in multicasting through correlated Nakagami-m fading channels with opportunistic relaying. Physical Communication, 43, 1–15.

    Article  Google Scholar 

  35. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay Selection for Security Enhancement in Cognitive Relay Networks. IEEE Wireless Communications Letters, 4(1), 46–49.

    Article  Google Scholar 

  36. Boche, H., & Schaefer, R. F. (2013). Wiretap Channels With Side Information-Strong Secrecy Capacity and Optimal Transceiver Design. IEEE Transections on Information Forensics and Security, 8(8), 1397–1408.

    Article  Google Scholar 

  37. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  38. Wang, P., Yu, G., & Zhang, Z. (2007). On the secrecy capacity of fading wireless channel with multiple eavesdroppers. In: Proceedings of IEEE Int. Symp. on Information Theory (ISIT 2007), (pp. 1301–1305).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Sarker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, D.K., Sarkar, M.Z.I. & Anower, M.S. Enhancing Security in Multicasting with Partial Relay Selection Over Composite Fading Channels. Wireless Pers Commun 121, 1067–1084 (2021). https://doi.org/10.1007/s11277-021-08672-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08672-0

Keywords

Navigation