iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11276-016-1309-9
SALA: Smartphone-Assisted Localization Algorithm for Positioning Indoor IoT Devices | Wireless Networks Skip to main content
Log in

SALA: Smartphone-Assisted Localization Algorithm for Positioning Indoor IoT Devices

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a Smartphone-Assisted Localization Algorithm (SALA) for the localization of Internet of Things (IoT) devices that are placed in indoor environments (e.g., smart home, smart office, smart mall, and smart factory). This SALA allows a smartphone to visually display the positions of IoT devices in indoor environments for the easy management of IoT devices, such as remote-control and monitoring. A smartphone plays a role of a mobile beacon that tracks its own position indoors by a sensor-fusion method with its motion sensors, such as accelerometer, gyroscope, and magnetometer. While moving around indoor, the smartphone periodically broadcasts short-distance beacon messages and collects the response messages from neighboring IoT devices. The response messages contains IoT device information. The smartphone stores the IoT device information in the response messages along with the message’s signal strength and its position into a dedicated server (e.g., home gateway) for the localization. These stored trace data are processed offline through our localization algorithm along with a given indoor layout, such as apartment layout. Through simulations, it is shown that our SALA can effectively localize IoT devices in an apartment with position errors less than 20 cm in a realistic apartment setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Cook, D. J., Youngblood, M., Heierman, III, E. O., Gopalratnam, K., Rao, S., Litvin, A., & Khawaja, F. (2003). MavHome: An agent-based smart home. In PerCom, Fort Worth, TX, USA, March 2003. IEEE.

  2. AllJoyn Framework. AllSeen Alliance: A leading internet of things initiative. https://allseenalliance.org/framework.

  3. Shala, U., & Rodriguez, A.. (2011). Indoor positioning using sensor-fusion in android devices. Technical report, 2011. http://hkr.diva-portal.org/smash/get/diva2:475619/FULLTEXT02.

  4. Chintalapudi, K., Padmanabha Iyer, A., & Padmanabhan, V. N. (2010). Indoor localization without the pain. ACM Mobicom, September 2010.

  5. He, X., Badiei, S., Aloi, D., & Li, J. (2013). WiFi iLocate: WiFi based indoor localization for smartphone. In Wireless telecommunications symposium. April 2013.

  6. Jiang, J.-A., Zheng, X.-Y., Chen, Y.-F., Wang, C.-H., Chen, P.-T., Chuang, C.-L., & Chen, C.-P. (2013). A distributed RSS-based localization using a dynamic circle expanding mechanism. IEEE Sensors Journal, 13(10), 3754–3766.

    Article  Google Scholar 

  7. Otsason, V., Varshavsky, A., LaMarca, A., & de Lara, E. (2005). Accurate GSM indoor localization. In International conference on ubiquitous computing. September 2005.

  8. Liu, H., Yang, J., Sidhom, S., Wang, Y., Chen, Y., & Ye, F. (2014). Accurate WiFi based localization for smartphones using peer assistance. IEEE Transactions on Mobile Computing, 13(10), 2199–2214.

    Article  Google Scholar 

  9. Liu, K., Liu, X., & Li, X. (2013). Guoguo: Enabling fine-grained indoor localization via smartphone. In MobiSys. ACM, June 2013.

  10. Hsu, H.-H., Peng, W.-J., Shih, T. K., Pai, T.-W., & Man, K. L. (2014). Smartphone indoor localization with accelerometer and gyroscope. In International conference on network-based information systems, September 2014.

  11. Liu, J., Chen, R., Pei, L., Guinness, R., & Kuusniemi, H. (2012). A hybrid smartphone indoor positioning solution for mobile LBS. In Sensors, December 2012.

  12. Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., & Zhao, F. (2012). A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the 2012 ACM conference on ubiquitous computing, UbiComp ’12, pages 421–430, New York, NY, USA, 2012. ACM.

  13. Jun, J., Gu, Y.., Cheng, L., Sun, J., Zhu, T., & Niu, J. (2013). Social-Loc: Improving indoor localization with social sensing. In SenSys. ACM, November 2013.

  14. Priyantha, N. B., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In MOBICOM. ACM, August 2000.

  15. Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In INFOCOM. IEEE, March 2003.

  16. Niculescu, Dragos, & Nath, Badri. (2003). DV based positioning in Ad hoc networks. Telecommunication Systems, 22(1), 267–280.

    Article  Google Scholar 

  17. Chen, H., Sezaki, K., Deng, P., & Cheung So, H. (2008). An improved DV-Hop localization algorithm for wireless sensor networks. IEEE, In ICIEA. June 2008.

  18. Yu, N., Wan, J., Song, Q., & Wu, Y. (2006). An improved DV-hop localization algorithm in wireless sensor networks. In ICIA. IEEE, August 2006.

  19. Chen, H., Sezaki, K., Deng, P., & Cheung So, H. (2012). Improved DV-hop localization algorithm for wireless sensor networks. In SISY., IEEE, September 2012.

  20. Zhong, Z., & He, T. (2009) Achieving range-free localization beyond connectivity. In SenSys, November 2009.

  21. Zhong, Z., Zhu, T., Wang, D., & He, T. (2009). Tracking with unreliable node sequences. In INFOCOM., IEEE, April 2009.

  22. Feng, C., Au, W. S. A., Valaee, S., & Tan, Z. (2012). Received-signal-strength-based indoor positioning using compressive sensing. Transactions on Mobile Computing, 11(12), 1983–1993.

    Article  Google Scholar 

  23. Koweerawong, C., Wipusitwarakun, K., & Kaemarungsi, K. (2013). Indoor localization improvement via adaptive RSS fingerprinting database. In ICOIN., IEEE, January 2013.

  24. Chen, Y., Lymberopoulos, D., Liu, J., & Priyantha, B. (2012). FM-based indoor localization. In MobiSys., ACM, June 2012.

  25. Matic, A., Papliatseyeu, A., Osmani, V., & Mayora-Ibarra, O. (2010). Tuning to your position: FM radio based indoor localization with spontaneous recalibration. In PerCom., IEEE, March 2010.

  26. Ruiz-Ruiz, Antonio J., Canovas, Oscar, Rubio Muñoz, Ruben A., & Lopez de Teruel Alcolea, Pedro E. (2012). Using SIFT and WiFi signals to provide location-based services for smartphones. LNICST, 104, 37–48.

    Google Scholar 

  27. Nirjon, S., Dickerson, R. F., Asare, P., Li, Q., Hong, D., Stankovic, J. A., Hu, P., Shen, G., & Jiang, X. (2013). Auditeur: A mobile-cloud service platform for acoustic event detection on smartphones. In MobiSys., ACM, June 2013.

  28. Martin, P., Ho, B.-J., Grupen, N., Muñoz, S., & Srivastava, M. (2014). An iBeacon primer for indoor localization. In BuildSys., ACM, November 2014.

  29. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2006). Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks, 2(2), 221–262.

    Article  Google Scholar 

  30. OMNeT++. Discrete Event Simulator for Networks. https://omnetpp.org/.

  31. Hyytiä, E., & Virtamo, J. (2007). Random waypoint mobility model in cellular networks. Wireless Networks, 13(2), 177–188.

    Article  Google Scholar 

  32. Chung, J., Donahoe, M., Schmandt, C., Kim, I.-J., Razavai, P., & Wiseman, M. (2011). Indoor location sensing using geo-magnetism. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pp.141–154, New York, NY, USA, 2011. ACM.

  33. Raspberry Pi. IoT Devices. https://www.raspberrypi.org/.

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014006438). This work was also partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) [10041244, SmartTV 2.0 Software Platform].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon (Paul) Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Yeon, S., Kim, T. et al. SALA: Smartphone-Assisted Localization Algorithm for Positioning Indoor IoT Devices. Wireless Netw 24, 27–47 (2018). https://doi.org/10.1007/s11276-016-1309-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1309-9

Keywords

Navigation