iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11265-008-0185-7
Registration of Brain Atlas to MR Images Using Topology Preserving Front Propagation | Journal of Signal Processing Systems Skip to main content
Log in

Registration of Brain Atlas to MR Images Using Topology Preserving Front Propagation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Registration of brain atlases to MR images is important in both anatomic and functional studies of human brains. Existing intensity-based methods are confronted with the translation of image-similarity functions to desired anatomic correspondences; while feature-based methods are challenged with the automated extraction of required features. In this paper, we propose a non-rigid registration method, in which, a block matching method is first used to calculate boundary displacement of all structures in a brain atlas, and a topology preserving front propagation method is then used to deform the atlas by warping the structures according to their boundary displacements. The novelty of our method is that the registration procedure is automated and anatomically driven while there is no need to extract particular structures. Experiments on the registration of the Talairach–Tournoux brain atlas to phantom brain MR images and real data show that our method is robust to noise and intensity inhomogeneity, more accurate than the commonly used Talairach stereotaxic spatial normalization, and thus promising to open new applications for brain atlases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Alan, W. C. L., & Hong, Y. (2003). An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Transactions on Medical Imaging, 22(9), 1063–1075.

    Article  Google Scholar 

  2. Bathe, K. J. (1996). Finite element procedure. New Jersey: Prentice-Hall.

    Google Scholar 

  3. Bertrand, G. (1994). Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15, 1003–1011.

    Article  Google Scholar 

  4. Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  5. Buckley, P. F., Dean, D., Bookstein, F. L., et al. (1999). Three-dimensional magnetic resonance-based morphometric and ventricular dysmorphology in schizophrenia. Biological Psychiatry, 45, 62–67.

    Article  Google Scholar 

  6. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  Google Scholar 

  7. Davatzikos, C. (1996). Spatial normalization of 3D brain images using deformable models. Journal of Computer Assisted Tomography, 20, 656–665.

    Article  Google Scholar 

  8. Joshi, A. A., Shattuck, D. W., Thompson, P. M., & Leahy, R. M. (2007). Surface-constrained volumetric brain registration using harmonic mappings. IEEE Transactions on Medical Imaging, 26(12), 1657–1668.

    Article  Google Scholar 

  9. Kwan, R. K. S., Evans, A. C., & Pike, G. B. (1996). An extensible MRI simulator for post-processing evaluation. Visualization in Biomedical Computing, 1131, 135–140.

    Article  Google Scholar 

  10. Liu, J., & Nowinski, W. L. (2006). A hybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics, 4(2), 177–198.

    Article  Google Scholar 

  11. Liu, J., Huang, S., Aziz, A., & Nowinski, W. L. (2007). Three dimensional digital atlas of the orbit constructed from multi-modal radiological images. International Journal of Computer Assisted Radiology and Surgery, 1(5), 275–283.

    Article  Google Scholar 

  12. Liu, J., Gao, W., Huang, S., & Nowinski, W. L. (2008). A model-based, semi-global segmentation approach for automatic 3D point landmark localization in neuroimages. IEEE Transactions on Medical Imaging, in press.

  13. Mangin, J. F., Frouin, V., Bloch, I., Regis, J., & Lopez-Krahe, J. (1995). From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5, 297–318.

    Article  Google Scholar 

  14. Meier, D. S., & Fisher, E. (2005). Atlas-based anatomic labeling in neurodegenerative disease via structure-driven atlas warping. Journal of Neuroimaging, 15(1), 16–26.

    Article  Google Scholar 

  15. Nowinski, W. L., & Belov, D. (2003). The Cerefy neuroradiology atlas: A Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the Internet. Neuroimage, 20, 50–57.

    Article  Google Scholar 

  16. Nowinski, W. L., Qian, G. Y., Prakash, K. N. B., Thirunavuukarasuu, A., Hu, Q., Ivanov, N., et al. (2006). Analysis of ischemic stroke MR images by means of brain atlases of anatomy and blood supply territories. Academic Radiology, 13(8), 1025–1034.

    Article  Google Scholar 

  17. Pitiot, A., Malandain, G., Bardinet, E., & Tompson, P. M. (2003). Piecewise affine registration of biological images. Lecture Notes on Computer Science, 2717, 91–101.

    Article  Google Scholar 

  18. Pluim, J. P., Maintz, J. B., & Viergever, M. A. (2003). Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging, 22(8), 986–1004.

    Article  Google Scholar 

  19. Rohde, G. K., Aldroubi, A., & Dawant, B. M. (2003). The adaptive base algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11), 1470–1479.

    Article  Google Scholar 

  20. Sandor, S., & Leahy, R. (1997). Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Transactions on Medical Imaging, 16, 41–54.

    Article  Google Scholar 

  21. Sethian, J. A. (2001). Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics, 169, 503–555.

    Article  MATH  MathSciNet  Google Scholar 

  22. Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13, 856–76.

    Article  Google Scholar 

  23. Subsol, G. (1999). Crest lines for curve-based warping. In A. Toga (Ed.), Brain warping (pp. 241–259). San Diego, CA: Academic.

    Chapter  Google Scholar 

  24. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. Stuttgart, Germany: Thieme Medical.

    Google Scholar 

  25. Thirion, J. P. (1998). Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis, 2(3), 243–260.

    Article  Google Scholar 

  26. Thompson, P., & Toga, A. (1999). Anatomically driven strategies for high-dimensional brain image warping and pathology detection. In A. Toga (Ed.), Brain warping (pp. 311–336). San Diego, CA: Academic.

    Chapter  Google Scholar 

  27. Thompson, P. M., & Toga, A. W. (2002). A framework for computational anatomy. Computing and Visualization in Science, 5, 13–34.

    Article  MATH  Google Scholar 

  28. Xu, M. H., & Nowinski, W. L. (2001). Talairach–Tournoux brain atlas registration using metalforming principle-based finite element method. Medical Image Analysis, 5, 271–279.

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge support for this research by the Biomedical Research Council, Agency for Science, Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Huang, S. & Nowinski, W.L. Registration of Brain Atlas to MR Images Using Topology Preserving Front Propagation. J Sign Process Syst Sign Image Video Technol 55, 209–216 (2009). https://doi.org/10.1007/s11265-008-0185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0185-7

Keywords

Navigation