iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S11128-023-04135-6
Quantum attacks on generalized Feistel networks based on the strong–weak separability | Quantum Information Processing Skip to main content
Log in

Quantum attacks on generalized Feistel networks based on the strong–weak separability

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Generalized Feistel networks are important components of symmetric ciphers, and detailed security evaluations in the quantum setting remain to be explored. In this paper, based on the strong–weak separability of certain branch output function, we present polynomial-time quantum distinguishers for 4F-function and 2F-function structures in quantum chosen-plaintext attack setting for the first time, and then quantum key-recovery attacks are achieved through Grover-meet-Simon algorithm, respectively. Under the condition of the semi-strong separability, firstly, we give a quantum distinguisher on 8-round 4F-function structure, from which we carry out a 12-round quantum key-recovery attack to guess 10n-bit subkey, whose time complexities gain a factor of \(2^{5n}\). When attacking \(r>12\) rounds, we can recover \(4(r - 12)n + 10n\)-bit subkey in time \({2^{\frac{{4(r - 12)n + 10n}}{2}}}\). Secondly, we show a quantum distinguisher on 5-round 2F-function structure, and a 7-round quantum key-recovery attack is performed on it, which can recover 3n-bit subkey in time \({2^{1.5n}}\). When \(r>7\), \(2(r - 7)n + 3n\)-bit subkey can be recovered with time complexities by a factor of \({2^{\frac{{2(r - 7)n + 3n}}{2}}}\). Furthermore, based on the weak separability, a 6-round quantum distinguisher for 2F-function structure is constructed, and an 8-round quantum key-recovery attack is achieved, and the time complexity is \({2^{\frac{{2(r - 8)n + 3n}}{2}}}\) when \(r>8\). The results show that the time complexity of each attack scheme we proposed is much better than that of Grover’s brute force search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No new data were generated or analyzed in support of this research.

References

  1. Feistel, H.: Cryptography and computer privacy. Sci. Am. 228(5), 15–23 (1973). Preprint at http://www.jstor.org/stable/24923044

  2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms—design andanalysis. In: Selected Areas in Cryptography, pp. 39–56. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44983-3_4

  3. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new lightweight block cipher. In: Cryptology and Network Security, pp. 334–348. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-10433-6_22

  4. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: Advances in Cryptology CRYPTO’ 89 Proceedings, pp. 461–480. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_42

  5. Lucks, S.: Faster Luby-Rackoff ciphers. In: Fast Software Encryption, pp. 189–203. Springer, Berlin (1996). https://doi.org/10.1007/3-540-60865-6_53

  6. Schneier, B., Kelsey, J.: Unbalanced feistel networks and block cipher design. In: Fast Software Encryption, pp. 121–144. Springer, Berlin (1996). https://doi.org/10.1007/3-540-60865-6_49

  7. Adams, D.C., Gilchrist, J.: The CAST-256 Encryption Algorithm. Preprint at https://doi.org/10.17487/RFC2612 (1999)

  8. Yeoh, W.-Z., Teh, J.S., Sazali, M.I.S.B.M.: \(\mu \)2 : A lightweight block cipher. In: Computational Science and Technology, pp. 281–290. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0058-9_27

  9. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block ciphers. In: Advances in Cryptology ASIACRYPT 2000, pp. 289–302. Springer, Berlin (2000). https://doi.org/10.1007/3-540-44448-3_22

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. Association for Computing Machinery, New York (1996). https://doi.org/10.1145/237814.237866

  11. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). https://doi.org/10.1137/S0097539796298637

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaplan, M., Leurent, G., Leverrier, A., Mara, N.-P.: Quantum differential and linear cryptanalysis. IACR Transactions on Symmetric Cryptology, Volume 2016, pp. 71–94 (2016) https://doi.org/10.13154/tosc.v2016.i1.71-94

  13. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: 2010 IEEE International Symposium on Information Theory (2010). https://doi.org/10.1109/ISIT.2010.5513654

  14. Leander, G., May, A.: Grover meets Simon—quantumly attacking the FX-construction. In: Advances in Cryptology ASIACRYPT 2017, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

  15. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 61(10), 102501 (2018). https://doi.org/10.1007/s11432-017-9468-y

    Article  Google Scholar 

  16. Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel schemes. Sci. China Inf. Sci. 62(2), 22501 (2019). https://doi.org/10.1007/s11432-017-9436-7

    Article  MathSciNet  Google Scholar 

  17. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers. Des. Codes Cryptography 88(6), 1179–1203 (2020). https://doi.org/10.1007/s10623-020-00741-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Ni, B., Ito, G., Dong, X., Iwata, T.: Quantum attacks against type-1 generalized Feistel ciphers and applications to cast-256. In: Progress in Cryptology—INDOCRYPT 2019, pp. 433–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_22

  19. Brasen Kidmose, A., Knudsen Ramkilde, L., Hodžić, S.: On quantum distinguishers for type-3 generalized feistel network based on separability. In: Post-Quantum Cryptography, pp. 461–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_25

  20. Zhang, Z., Wu, W., Han, S., Wang, B.: Quantum attacks on type-3 generalized Feistel scheme and unbalanced Feistel scheme with expanding functions. Chin. J. Electron. 32(2), 209–216 (2023). https://doi.org/10.23919/cje.2021.00.294

    Article  Google Scholar 

  21. You, Q.D., Qian, X., Zhou, X., Zhang, Y., Zhao, X.J.: Research on quantum cryptanalysis on sms4-like structure and NBC algorithm. J. Cryptologic Res. 7(6), 864–874 (2020). https://doi.org/10.13868/j.cnki.jcr.000412

    Article  Google Scholar 

  22. Cid, C., Hosoyamada, A., Liu, Y., Sim, S.M.: Quantum cryptanalysis on contracting Feistel structures and observation on related-key settings. In: Progress in Cryptology—INDOCRYPT 2020, pp. 373–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_17

  23. Hodžić, S., Knudsen, L.R.: A quantum distinguisher for 7/8-round sms4 block cipher. Quantum Inf. Process. 19(11), 411 (2020). https://doi.org/10.1007/s11128-020-02929-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Qian, X., You, Q.D., Zhou, X., Zhang, Y., Zhao, X.J.: Quantum attack on mars-like Feistel schemes. J. Cryptologic Res. 8(3), 417–431 (2021). https://doi.org/10.13868/j.cnki.jcr.000448

    Article  Google Scholar 

  25. Cui, J., Guo, J., Ding, S.: Applications of Simon’s algorithm in quantum attacks on Feistel variants. Quantum Inf. Process. 20(3), 1–50 (2021). https://doi.org/10.1007/s11128-021-03027-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Nyberg, K.: Generalized Feistel networks. In: Advances in Cryptology ASIACRYPT ’96, pp. 91–104. Springer, Berlin (1996). https://doi.org/10.1007/BFb0034838

  27. Wu, S., Wang, M.: Security Evaluation against Differential Cryptanalysis for Block Cipher Structures. Preprint at https://eprint.iacr.org/2011/551 (2011)

  28. Cui, T., Fu, L.S., Jin, C.H.: Zero correlation linear approximations and impossible differentials of new-structure series with SP networks. ACTA Electonica Sinica 45(6), 1367–1374 (2017). https://doi.org/10.3969/j.issn.0372-2112.2017.06.013

    Article  Google Scholar 

  29. YU, B., Sun, B., Liu, G.Q., Zhang, Z.Y.: Quantum cryptanalysis on some generalized unbalanced Feistel networks. J. Cryptologic Res. 8(6), 960–973 (2021). https://doi.org/10.13868/j.cnki.jcr.000490

    Article  Google Scholar 

  30. Zou, K., Dong, X., Zhang, F.: Improved quantum attack on several generalized unbalanced Feistel structures. In: 2022 International Conference on Networks, Communications and Information Technology (CNCIT) (2022). https://doi.org/10.1109/CNCIT56797.2022.00026

  31. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0005055 (2000)

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 62172337 and 61902073) and Key Project of Gansu Natural Science Foundation under Grant Number 23JRRA685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoni Du.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Du, X., Jia, M. et al. Quantum attacks on generalized Feistel networks based on the strong–weak separability. Quantum Inf Process 22, 375 (2023). https://doi.org/10.1007/s11128-023-04135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04135-6

Keywords

Navigation