Abstract
We propose a simple scheme to generate large-scale W state. With the cross-phase modulation, we design a photon number resolving discrimination. This discrimination, associated with some single-photon operations, is enough to connect the existed W states. No more two-photon or multi-photon operations are required. This scheme is powerful and flexible for connecting arbitrary number of W states. It is therefore suitable for creating large-scale W state with the current technology.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)
Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation ofmultipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210–1217 (2014)
Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)
Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825–2828 (2014)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)
D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)
Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication via a W state. J. Korean Phys. Soc. 46, 763–768 (2005)
Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using W-state. Opt. Commun. 331, 353–358 (2014)
Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66, 044302 (2002)
Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)
Li, Y., Kobayashi, T.: Four-photon W state using two-crystal geometry parametric down-conversion. Phys. Rev. A 70, 014301 (2004)
Shi, B.S., Tomita, A.: Creation of a polarization W state using optical fibre multiports. J. Mod. Opt. 52, 755–761 (2005)
Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: An elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)
Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)
Ikuta, R., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Optimal local expansion of W states using linear optics and Fock states. Phys. Rev. A 83, 012314 (2011)
Gong, Y.X., Zou, X.B., Huang, Y.F., Guo, G.C.: Simple scheme for expanding a polarization-entangled W state adding one photon. J. Phys. B: At. Mol. Opt. Phys. 42, 035503 (2013)
Özdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)
Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)
Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)
Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12, 2965–2975 (2013)
Lin, Q.: Efficient generation of multi-photon W state. Sci. Sin.-Phys. Mech. Astron. 42, 54–60 (2012). (in Chinese)
Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14, 1919–1932 (2015)
Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847–2860 (2015)
Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96–100 (2015)
Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)
Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2014)
Mikami, H., Li, Y., Fukuoka, K., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon w state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95, 150404 (2005)
Kiesel, N., Schmid, C., Tth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)
Tashima, T., Wakatsuki, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two EPR photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009)
Tashima, T., Kitano, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)
Gräfe, M., Heilmann, R., Perez-Leijia, A., Keil, R., Dreisow, F., Heinrich, M., Moya-cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791–795 (2014)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)
Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)
Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)
Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)
Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)
Lin, Q., He, B.: Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys. Rev. A 82, 022331 (2010)
Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312 (2011)
Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)
Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)
Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)
Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)
Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)
Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)
Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating chi-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)
Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit- ip error channel. Quantum Inf. Process 13, 1413–1424 (2014)
Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)
Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087–2101 (2014)
Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)
He, B., MacRae, A., Han, Y., Lvovsky, A., Simon, C.: Transverse multimode effects on the performance of photon–photon gates. Phys. Rev. A 83, 022312 (2011)
Rispe, A., He, B., Simon, C.: Photon–Photon Gates in Bose-Einstein Condensates. Phys. Rev. Lett. 107, 043601 (2011)
He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)
He, B., Scherer, A.: Continuous-mode effects and photon–photon phase gate performance. Phys. Rev. A 85, 033814 (2012)
He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)
Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015)
Acknowledgments
This work was funded by National Natural Science Foundation of China (Grant No. 11574093), Natural Science Foundation of Fujian Province of China (Grant No. 2014J01015), Program for New Century Excellent Talents in Fujian Province University (Grant No. 2012FJ-NCET-ZR04) and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No. ZQN-PY113).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhai, Y., Chen, YW. & Lin, Q. Enlarge the scale of W state by connecting multiple existed W states. Quantum Inf Process 15, 761–772 (2016). https://doi.org/10.1007/s11128-015-1200-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1200-0