Abstract
Based on the blossoming theory, in this work we develop a new method for deriving Hermite-Padé approximants of certain hypergeometric series. Its general principle consists in building identities generalising the Hermite identity for exponentials, and in then applying their blossomed versions to appropriate tuples to simultaneously produce explicit expressions of the approximants and explicit integral representations of the corresponding remainders. For binomial series we use classical blossoms while for q-hypergeometric series we have to use q-blossoms.
Similar content being viewed by others
References
Ait-Haddou, R.: q-Blossoming and Hermite-Padé approximants to the q-exponential function. Numer. Algo. 76, 53–66 (2017)
Ait-Haddou, R., Goldman, R.: Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials. App. Math Comp. 266, 267–276 (2015)
Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev Spaces I: applications to schur functions. Found. Comp. Math. 18, 135–158 (2018)
Baker, A.: Rational approximations to \(\sqrt [3]{2}\) and other algebraic numbers. Quart. J. Math. 15, 375–383 (1964)
Baker, G.A.: Essentials of Padé Approximants. Academic Press, New York (1975)
Borwein, P.B.: Padé approximants for the q-elementary functions. Constr. Approx. 4, 391–402 (1988)
Brezinski, C., Padé, H.: Oeuvres. Albert Blanchard, Paris (1984)
de Bruin, M.G.: Some convergence results in simultaneous rational approximation to the set of hypergeometric functions \(\{{~}_{1}\!F_{1}(1; C_{i}; Z)\}_{i=1}^{n}\). In: Padé Approximation and Its Applications, Lecture Notes in Mathematics, vol. 1071, pp 12–33. Springer, Berlin (1984)
de Bruin, M. G.: Simultaneous rational approximation to some q-hypergeometric functions. In: Nonlinear Numerical Methods and Rational Approximation, Math. Appl., vol. 43, pp 135–142. Reidel, Dordrecht (1988)
Chudnovsky, G.V.: Padé approximations to the generalized hypergeometric functions. J. Math. Pures Appl. 58, 445–476 (1979)
Chudnovsky, D.V., Chudnovsky, G.V.: Padé and rational approximations to systems of functions and their arithmetic applications. In: Lecture Notes in Mathematics, vol. 1052. Springer, Berlin (1984)
Erdélyi, A., et al.: Higher Transcendental Function, vol. 1. McGraw Hill Book Co., Inc., New York (1953)
Exton, M.: q-Hypergeometric Functions and Applications. Ellis Horwood series in mathematics and its applications, Chichester (1983)
Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: a Practical Guide. Ac Press (1993)
Gasper, G., Rahman, M.: Basic Hypergeometric Series. In: Encyclopedia Mathematics and its Applications, vol. 96. Cambridge University Press (2004)
Hata, M., Huttner, M.: Padé approximation to the logarithmic derivative of the Gauss hypergeometric function, Analytic number theory, pp 157–172. Springer, Boston (2002)
Hermite, C.: Sur la généralisation des fractions continues algébriques. Annali Math. Pura Appl. 21, 289–308 (1893)
Hurwitz, A.: Uber arithmetische Eigenschaften gewisser transcendenter Funktionen. Math. Ann. 22, 211–229 (1883)
Kac, V., Cheung, P.: Quantum calculus, Universitext series, IX. Springer, Berlin (2002)
Matala-aho, T.: Type II Hermite-Padé approximations of generalized hypergeometric series. Constr. Approx. 33, 289–312 (2011)
Mazure, M.-L., Laurent, P.-J.: Affine and non-affine blossoms. In: Conte, R., Demichelis, V., Fontanelle, F., Galligani, I. (eds.) Torino Workshop on Computational Geometry, pp 201–230. World Scientific Pub., Singapore (1993)
Mazure, M.-L.: Blossoming and CAGD algorithms. In: Shape Preserving Representations for Computer-Aided Design, pp 99–117. Nova Science Pub. (1999)
Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)
Mazure, M.-L.: Extended Chebyshev spaces in rationality. BIT Num. Math. 53, 1013–1045 (2013)
Merilä, V.: A nonvanishing lemma for certain Padé approximations of the second kind. Intern. J. Number Theory 7, 1977–1997 (2011)
Nesterenko, Y.V.: Hermite-Padé approximants of generalized hypergeometric functions. Russ. Acad. Sci. Sb. Math. 83(1995), 189–219 (1994)
Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comp. Appl. Math. 151, 1–12 (2003)
Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10, 181–210 (1993)
Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Design 6, 323–358 (1989)
Seigel, C.L.: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss., KL, 1 (1929)
Simeonov, P., Zafiris, V., Goldman, R.: q-Blossoming: a new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164, 77–104 (2012)
Stihl, T.: Arithmetische Eigenschaften spezieller Heinescher Reihen. Math. Ann. 268, 21–41 (1984)
Thue, A.: Bemerkungen über gewisse näherungsbrüche algebraischer Zahlen. Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. K. 3 (1908)
Thue, A.: Über rationale annäherungswerte der reellen würzel der ganzen Funktion dritten Grades x3 − ax − b. Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. M. 6 (1908)
Van Assche, W.: Padé and Hermite-Padé approximation and orthogonality. Surv. Approxim. Theory 2, 61–91 (2006)
Waldschmidt, M.: Introduction to Diophantine methods: irrationality and transcendence, https://webusers.imj-prg.fr/michel.waldschmidt/coursHCMUNS2007.html
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ait-Haddou, R., Mazure, ML. Blossoming and Hermite-Padé approximation for hypergeometric series. Numer Algor 88, 1183–1214 (2021). https://doi.org/10.1007/s11075-021-01071-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01071-3
Keywords
- Rational approximation
- Hermite-Padé approximation
- Hypergeometric series
- Hermite identity
- Blossoms
- q-Blossoms