Abstract
We study some classes of generalized affine functions, using a generalized differential. We study some properties and characterizations of these classes and we devise some characterizations of solution sets of optimization problems involving such functions or functions of related classes.
Similar content being viewed by others
References
Aggarwal, S., Bhatia, S.: Pseudolinearity and efficiency via Dini derivatives. Indian J. Pure Appl. Math. 20(12), 1173–1183 (1989)
Cambini, A., Martein, L.: Generalized convexity and optimality conditions in scalar and vector optimization. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 151–194. Kluwer Academic, Amsterdam (2005)
Chew, K.L., Choo, E.V.: Pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984)
Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87(3), 747–755 (1995)
Komlosi, S.: First and second characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993)
Kortanek, K.O., Evans, J.P.: Pseudoconcave programming and lagrange regularity. Oper. Res. 15(5), 891–892 (1967)
Kruk, S., Wolkowicz, H.: Pseudolinear programming. SIAM Rev. 41(4), 795–805 (1999)
Linh, N.T.H., Penot, J.-P.: Generalized affine maps and generalized convex functions. Pac. J. Optim. 4(2), 353–380 (2008)
Penot, J.-P.: Glimpses upon quasiconvex analysis. ESIAM: Proc. 20, 170–194 (2007)
Linh, N.T.H., Penot, J.-P.: Generalized convex functions and generalized differentials. Optim., J. Math. Program. Oper. (2011) doi:10.1080/02331934.2011.611882
Demyanov, V.F., Rubinov, A.M.: Contructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt am Main (1995)
Jeyakumar, V., Luc, D.T.: Nonsmooth Vector Functions and Continuous Optimization. Springer, Berlin (2007)
Penot, J.-P.: Are generalized derivatives useful for generalized convex function. In: Crouzeix, J.-P., Volle, M., Martinez-Legaz, J.-E. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 3–39. Kluwer Academic, Amsterdam (1998)
Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121(2), 445–450 (2004)
Bianchi, M., Schaible, S.: An extension of pseudolinear functions and variational inequalities problems. J. Optim. Theory Appl. 104(1), 59–71 (2000)
Bianchi, M., Hadjisavvas, N., Schaible, S.: On pseudomonotone maps T for which −T is also pseudomonotne. J. Convex Anal. 10(1), 149–168 (2003)
Linh, N.T.H., Penot, J.-P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17(2), 500–510 (2006)
Penot, J.-P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117(3), 627–636 (2003)
Penot, J.-P.: A Lagrangian approach to quasiconvex analysis. J. Optim. Theory Appl. 117(3), 637–647 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean-Pierre Crouzeix.
Rights and permissions
About this article
Cite this article
Linh, N.T.H., Penot, JP. Generalized Affine Functions and Generalized Differentials. J Optim Theory Appl 154, 321–338 (2012). https://doi.org/10.1007/s10957-012-0051-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0051-4