iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10957-012-0051-4
Generalized Affine Functions and Generalized Differentials | Journal of Optimization Theory and Applications Skip to main content
Log in

Generalized Affine Functions and Generalized Differentials

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study some classes of generalized affine functions, using a generalized differential. We study some properties and characterizations of these classes and we devise some characterizations of solution sets of optimization problems involving such functions or functions of related classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, S., Bhatia, S.: Pseudolinearity and efficiency via Dini derivatives. Indian J. Pure Appl. Math. 20(12), 1173–1183 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Cambini, A., Martein, L.: Generalized convexity and optimality conditions in scalar and vector optimization. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 151–194. Kluwer Academic, Amsterdam (2005)

    Google Scholar 

  3. Chew, K.L., Choo, E.V.: Pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87(3), 747–755 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Komlosi, S.: First and second characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993)

    Article  MATH  Google Scholar 

  6. Kortanek, K.O., Evans, J.P.: Pseudoconcave programming and lagrange regularity. Oper. Res. 15(5), 891–892 (1967)

    MathSciNet  Google Scholar 

  7. Kruk, S., Wolkowicz, H.: Pseudolinear programming. SIAM Rev. 41(4), 795–805 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Linh, N.T.H., Penot, J.-P.: Generalized affine maps and generalized convex functions. Pac. J. Optim. 4(2), 353–380 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Penot, J.-P.: Glimpses upon quasiconvex analysis. ESIAM: Proc. 20, 170–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Linh, N.T.H., Penot, J.-P.: Generalized convex functions and generalized differentials. Optim., J. Math. Program. Oper. (2011) doi:10.1080/02331934.2011.611882

    Google Scholar 

  11. Demyanov, V.F., Rubinov, A.M.: Contructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt am Main (1995)

    Google Scholar 

  12. Jeyakumar, V., Luc, D.T.: Nonsmooth Vector Functions and Continuous Optimization. Springer, Berlin (2007)

    Google Scholar 

  13. Penot, J.-P.: Are generalized derivatives useful for generalized convex function. In: Crouzeix, J.-P., Volle, M., Martinez-Legaz, J.-E. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 3–39. Kluwer Academic, Amsterdam (1998)

    Chapter  Google Scholar 

  14. Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121(2), 445–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bianchi, M., Schaible, S.: An extension of pseudolinear functions and variational inequalities problems. J. Optim. Theory Appl. 104(1), 59–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bianchi, M., Hadjisavvas, N., Schaible, S.: On pseudomonotone maps T for which −T is also pseudomonotne. J. Convex Anal. 10(1), 149–168 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Linh, N.T.H., Penot, J.-P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17(2), 500–510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Penot, J.-P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117(3), 627–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penot, J.-P.: A Lagrangian approach to quasiconvex analysis. J. Optim. Theory Appl. 117(3), 637–647 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. H. Linh.

Additional information

Communicated by Jean-Pierre Crouzeix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linh, N.T.H., Penot, JP. Generalized Affine Functions and Generalized Differentials. J Optim Theory Appl 154, 321–338 (2012). https://doi.org/10.1007/s10957-012-0051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0051-4

Keywords

Navigation