iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10915-024-02460-1
Multi-Linear Pseudo-PageRank for Hypergraph Partitioning | Journal of Scientific Computing Skip to main content
Log in

Multi-Linear Pseudo-PageRank for Hypergraph Partitioning

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Motivated by the PageRank model for graph partitioning, we develop an extension of PageRank for partitioning uniform hypergraphs. Starting from adjacency tensors of uniform hypergraphs, we establish the multi-linear pseudo-PageRank (MLPPR) model, which is formulated as a multi-linear system with nonnegative constraints. The coefficient tensor of MLPPR is a kind of Laplacian tensors of uniform hypergraphs, which are almost as sparse as adjacency tensors since no dangling corrections are incorporated. Furthermore, all frontal slices of the coefficient tensor of MLPPR are M-matrices. Theoretically, MLPPR has a solution, which is unique under mild conditions. An error bound of the MLPPR solution is analyzed when the Laplacian tensor is slightly perturbed. Computationally, by exploiting the structural Laplacian tensor, we propose a tensor splitting algorithm, which converges linearly to a solution of MLPPR. Finally, numerical experiments illustrate that MLPPR is effective and efficient for hypergraph partitioning problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data Availability Enquiries about data availability should be directed to the authors.

References

  1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1), 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  2. Bryan, K., Leise, T.: The \$ 25,000,000,000 eigenvector: the linear algebra behind Google. SIAM Rev. 48(3), 569–581 (2006). https://doi.org/10.1137/050623280

    Article  MathSciNet  Google Scholar 

  3. Gleich, D.F.: PageRank beyond the Web. SIAM Rev. 57(3), 321–363 (2015). https://doi.org/10.1137/140976649

    Article  MathSciNet  Google Scholar 

  4. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  5. Arrigo, F., Higham, D.J., Noferini, V.: Non-backtracking PageRank. J. Sci. Comput. 80, 1419–1437 (2019). https://doi.org/10.1007/s10915-019-00981-8

    Article  MathSciNet  Google Scholar 

  6. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016). https://doi.org/10.1126/science.aad9029

    Article  Google Scholar 

  7. Benson, A.R., Gleich, D.F., Lim, L.-H.: The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59(2), 321–345 (2017). https://doi.org/10.1137/16M1074023

    Article  MathSciNet  Google Scholar 

  8. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006). https://doi.org/10.1126/science.1116869

    Article  MathSciNet  Google Scholar 

  9. Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 4630 (2014). https://doi.org/10.1038/ncomms5630

    Article  Google Scholar 

  10. Ipsen, I.C.F., Selee, T.M.: PageRank computation, with special attention to dangling nodes. SIAM J. Matrix Anal. Appl. 29(4), 1281–1296 (2008). https://doi.org/10.1137/060664331

    Article  MathSciNet  Google Scholar 

  11. Francesco, T.: A note on certain ergodicity coefficients. Special Matrices 3(1), 175–185 (2015). https://doi.org/10.1515/spma-2015-0016

    Article  MathSciNet  Google Scholar 

  12. Langville, A.N., Meyer, C.D.: A reordering for the pagerank problem. SIAM J. Sci. Comput. 27(6), 2112–2120 (2006). https://doi.org/10.1137/040607551

    Article  MathSciNet  Google Scholar 

  13. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Ann. Comb. 9(1), 1–19 (2005). https://doi.org/10.1007/s00026-005-0237-z

    Article  MathSciNet  Google Scholar 

  14. Andersen, R., Chung, F., Lang, K.: Using PageRank to locally partition a graph. Internet Math. 4(1), 35–64 (2007)

    Article  MathSciNet  Google Scholar 

  15. Andersen, R., Chung, F., Lang, K.: Local partitioning for directed graphs using PageRank. Internet Math. 5(1–2), 3–22 (2008). https://doi.org/10.1007/978-3-540-77004-6_13

    Article  MathSciNet  Google Scholar 

  16. Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62(3), 362–385 (2014). https://doi.org/10.1080/03081087.2013.777436

    Article  MathSciNet  Google Scholar 

  17. Gleich, D.F., Lim, L.-H., Yu, Y.: Multilinear PageRank. SIAM J. Matrix Anal. Appl. 36(4), 1507–1541 (2015). https://doi.org/10.1137/140985160

    Article  MathSciNet  Google Scholar 

  18. Chang, K.C., Zhang, T.: On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J. Math. Anal. Appl. 408(2), 525–540 (2013). https://doi.org/10.1016/j.jmaa.2013.04.019

    Article  MathSciNet  Google Scholar 

  19. Fasino, D., Tudisco, F.: Ergodicity coefficients for higher-order stochastic processes. SIAM J. Math. Data Sci. 2(3), 740–769 (2020). https://doi.org/10.1137/19M1285214

    Article  MathSciNet  Google Scholar 

  20. Li, W., Liu, D., Ng, M.K., Vong, S.-W.: The uniqueness of multilinear PageRank vectors. Numer. Linear Algebra Appl. 24(6), 2107–112 (2017). https://doi.org/10.1002/nla.2107

    Article  MathSciNet  Google Scholar 

  21. Li, W., Liu, D., Vong, S.-W., Xiao, M.: Multilinear PageRank: uniqueness, error bound and perturbation analysis. Appl. Numer. Math. 156, 584–607 (2020). https://doi.org/10.1016/j.apnum.2020.05.022

    Article  MathSciNet  Google Scholar 

  22. Li, W., Cui, L.-B., Ng, M.K.: The perturbation bound for the Perron vector of a transition probability tensor. Numer. Linear Algebra Appl. 20(6), 985–1000 (2013). https://doi.org/10.1002/nla.1886

    Article  MathSciNet  Google Scholar 

  23. Benson, A.R.: Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1(2), 293–312 (2019). https://doi.org/10.1137/18M1203031

    Article  MathSciNet  Google Scholar 

  24. Benson, A.R., Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning higher-order network structures. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 118–126 (2015)

  25. Meini, B., Poloni, F.: Perron-based algorithms for the multilinear PageRank. Numer. Linear Algebra Appl. 25(6), e2177 (2018). https://doi.org/10.1002/nla.2177

    Article  MathSciNet  Google Scholar 

  26. Huang, J., Wu, G.: Convergence of the fixed-point iteration for multilinear PageRank. Numer. Linear Algebra Appl. 28(5), 2379 (2021). https://doi.org/10.1002/nla.2379

    Article  Google Scholar 

  27. Liu, D., Li, W., Vong, S.-W.: Relaxation methods for solving the tensor equation arising from the higher-order Markov chains. Numer. Linear Algebra Appl. 26(5), 2260 (2019). https://doi.org/10.1002/nla.2260

    Article  MathSciNet  Google Scholar 

  28. Cipolla, S., Redivo-Zaglia, M., Tudisco, F.: Extrapolation methods for fixed-point multilinear PageRank computations. Numer. Linear Algebra Appl. 27(2), 2280 (2020). https://doi.org/10.1002/nla.2280

    Article  MathSciNet  Google Scholar 

  29. Yuan, A., Calder, J., Osting, B.: A continuum limit for the PageRank algorithm. Eur. J. Appl. Math. 33(3), 472–504 (2022). https://doi.org/10.1017/S0956792521000097

    Article  MathSciNet  Google Scholar 

  30. Bulò, S.R., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013). https://doi.org/10.1109/TPAMI.2012.226

    Article  Google Scholar 

  31. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436(9), 3268–3292 (2012). https://doi.org/10.1016/j.laa.2011.11.018

    Article  MathSciNet  Google Scholar 

  32. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  33. Gao, G., Chang, A., Hou, Y.: Spectral radius on linear \(r\)-graphs without expanded \(k_{r+1}\). SIAM J. Discret. Math. 36(2), 1000–1011 (2022). https://doi.org/10.1137/21M1404740

    Article  Google Scholar 

  34. Huang, J., Wu, G.: Truncated and sparse power methods with partially updating for large and sparse higher-order PageRank problems. J. Sci. Comput. 95, 34 (2023). https://doi.org/10.1007/s10915-023-02146-0

    Article  MathSciNet  Google Scholar 

  35. Li, W., Ng, M.K.: Some bounds for the spectral radius of nonnegative tensors. Numer. Math. 130, 315–335 (2015). https://doi.org/10.1007/s00211-014-0666-5

    Article  MathSciNet  Google Scholar 

  36. Liu, C.-S., Guo, C.-H., Lin, W.-W.: Newton-Noda iteration for finding the Perron pair of a weakly irreducible nonnegative tensor. Numer. Math. 137, 63–90 (2017). https://doi.org/10.1007/s00211-017-0869-7

    Article  MathSciNet  Google Scholar 

  37. Chen, Y., Qi, L., Zhang, X.: The Fiedler vector of a Laplacian tensor for hypergraph partitioning. SIAM J. Sci. Comput. 39(6), 2508–2537 (2017). https://doi.org/10.1137/16M1094828

    Article  MathSciNet  Google Scholar 

  38. Eberly, D.: Least squares fitting of data by linear or quadratic structures, Redmond WA 98052 (Created: July 15, 1999; Last Modified: September 7, 2021)

  39. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection (2014)

Download references

Acknowledgements

The authors are grateful to the associate editor and anonymous referees for helping us improve the manuscript.

Funding

This work was funded by the National Natural Science Foundation of China grants 12171168, 12071159, 12326302, 62073087, and U1811464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingya Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, W. & Chang, J. Multi-Linear Pseudo-PageRank for Hypergraph Partitioning. J Sci Comput 99, 7 (2024). https://doi.org/10.1007/s10915-024-02460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02460-1

Keywords

Mathematics Subject Classification

Navigation