iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10915-008-9233-5
Stabilized Methods for Compressible Flows | Journal of Scientific Computing Skip to main content
Log in

Stabilized Methods for Compressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article reviews 25 years of research of the authors and their collaborators on stabilized methods for compressible flow computations. An historical perspective is adopted to document the main advances from the initial developments to modern approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliabadi, S.K., Ray, S.E., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Mech. 11, 300–312 (1993)

    Article  MATH  Google Scholar 

  2. Aliabadi, S.K., Tezduyar, T.E.: Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 107(1–2), 209–223 (1993)

    Article  MATH  Google Scholar 

  3. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for the convective diffusion equations. RAIRO. Anal. Numér. 27, 277–282 (1981)

    MathSciNet  Google Scholar 

  5. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buning, P.G., Jespersen, D.C., Pulliam, T.H., Klopfer, G.H., Chan, W.M., Slotnick, J.P., Krist, S.E., Renze, K.J.: OVERFLOW User’s Manual, Version 1.8s, 28 November 2000. NASA Langley Research Center, Hampton, Virginia (2000)

  7. Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow SUPG parameters computed from element matrices. Commun. Numer. Methods Eng. 21, 465–476 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow supg parameters computed from degree-of-freedom submatrices. Comput. Mech. 38, 334–343 (2006)

    Article  MATH  Google Scholar 

  9. Chalot, F.E.: Industrial aerodynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)

    Google Scholar 

  10. Chalot, F.E., Hughes, T.J.R.: A consistent equilibrium chemistry algorithm for hypersonic flows. Comput. Methods Appl. Mech. Eng. 112, 25–40 (1994)

    Article  MATH  Google Scholar 

  11. Christie, I., Griffiths, D.F., Sanz-Serna, J.M.: Product approximantion for non-linear problems in the finite element method. IMA J. Numer. Anal. 1, 253–266 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Corsini, A., Rispoli, F., Santoriello, A.: A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput. Methods Appl. Mech. Eng. 194, 4797–4823 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Corsini, A., Rispoli, F., Santoriello, A., Tezduyar, T.E.: Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput. Mech. 38, 356–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Estep, D., French, D.A.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO. Numer. Anal. 28, 815–852 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Fletcher, C.A.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225–244 (1983)

    Article  MathSciNet  Google Scholar 

  16. Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107, 145–157 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. French, D.A.: Continuous Galerkin finite element methods for a forward-backward heat equation. Numer. Methods Partial Differ. Equ. 15, 491–506 (1999)

    Article  MathSciNet  Google Scholar 

  19. French, D.A., Jensen, S.: Long time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems. IMA J. Numer. Anal. 14, 421–442 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 65, 491–506 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  22. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hauke, G.: A unified approach to compressible and incompressible flows and a new entropy-consistent formulation of the κ-ε model. Ph.D. thesis, Mechanical Engineering Department, Stanford University (1995)

  24. Hauke, G.: Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput. Methods Appl. Mech. Eng. 190, 6881–6893 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hauke, G., Hughes, T.J.R.: A unified approach to compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 113, 389–396 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hauke, G., Hughes, T.J.R.: A comparative study of different sets of variables for solving compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 153, 1–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hoffman, J., Johnson, C.: Computability and adaptivity in cfd. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)

    Google Scholar 

  28. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MATH  Google Scholar 

  29. Hughes, T.J.R., Feijóo, G., Mazzei, L., Quincy, J.-B.: The Variational Multiscale Method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MATH  Google Scholar 

  30. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 329–336 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hughes, T.J.R., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hughes, T.J.R., Mazzei, L., Jensen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(47), 147–162 (2000)

    Google Scholar 

  37. Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.: The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence. Phys. Fluids 13, 505–512 (2001)

    Article  Google Scholar 

  38. Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6), 1784–1799 (2001)

    Article  Google Scholar 

  39. Hughes, T.J.R., Scovazzi, G., Franca, L.P.: Multiscale and stabilized methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)

    Google Scholar 

  40. Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hughes, T.J.R., Winget, J., Levit, I., Tezduyar, T.E.: New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. In: Atluri, S., Perrone, N. (eds.) Computer Methods for Nonlinear Solids and Structural Mechanics. AMD, vol. 54, pp. 75–109. ASME, New York (1983)

    Google Scholar 

  42. Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26(120), 881–891 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  43. Jamet, P.: Stability and convergence of a generalized Crank-Nicolson scheme on a variable mesh for the heat equation. SIAM J. Numer. Anal. 17(4), 530–539 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  44. Jansen, K.E.: A stabilized finite element method for computing turbulence. Comput. Methods Appl. Mech. Eng. 174, 299–317 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Jansen, K.E., Hughes, T.J.R.: A stabilized finite element method for the Reynolds-averaged Navier-Stokes equations. Surv. Math. Ind. 4, 279–317 (1995)

    MATH  MathSciNet  Google Scholar 

  46. Jansen, K.E., Johan, Z., Hughes, T.J.R.: Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system. Comput. Methods Appl. Mech. Eng. 105, 405–433 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  48. Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: A data parallel finite element method for computational fluid dynamics on the Connection Machine system. Comput. Methods Appl. Mech. Eng. 99, 113–134 (1992)

    Article  MATH  Google Scholar 

  49. Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: An efficient communications strategy for finite element methods on the Connection Machine CM-5 system. Comput. Methods Appl. Mech. Eng. 113, 363–387 (1994)

    Article  MATH  Google Scholar 

  50. Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: Scalability of finite element applications on distributed-memory parallel computers. Comput. Methods Appl. Mech. Eng. 119, 61–72 (1994)

    Article  MATH  Google Scholar 

  51. Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107, 117–129 (1993)

    Article  MATH  Google Scholar 

  52. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)

    Article  MATH  Google Scholar 

  53. Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49, 427–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  54. Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54, 107–129 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  55. Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993)

    Article  MATH  Google Scholar 

  56. Le Beau, G.J., Tezduyar, T.E.: Finite element computation of compressible flows with the SUPG formulation. In: Advances in Finite Element Analysis in Fluid Dynamics. FED, vol. 123, pp. 21–27. ASME, New York (1991)

    Google Scholar 

  57. Le Beau, G.J., Tezduyar, T.E.: Finite element solution of flow problems with mixed-time integration. J. Eng. Mech. 117, 1311–1330 (1991)

    Article  Google Scholar 

  58. Masud, A.: Effects of mesh motion on the stability and convergence of ALE based formulations for moving boundary flows. Comput. Mech. 38(4–5), 430–439 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. Mittal, S., Aliabadi, S., Tezduyar, T.: Parallel computation of unsteady compressible flows with the EDICT. Comput. Mech. 23, 151–157 (1999)

    Article  MATH  Google Scholar 

  60. Mittal, S., Tezduyar, T.: A unified finite element formulation for compressible and incompressible flows using augumented conservation variables. Comput. Methods Appl. Mech. Eng. 161, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  61. Moch, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37, 70–88 (1980)

    Article  Google Scholar 

  62. Rifai, S.M., Buell, J.C., Johan, Z., Hughes, T.J.R.: Automotive design applications of fluid flow simulation on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 184, 449–466 (2000)

    Article  MATH  Google Scholar 

  63. Rifai, S.M., Johan, Z., Wang, W.-P., Grisval, J.-P., Hughes, T.J.R., Ferencz, R.M.: Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 174, 393–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  64. Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007)

    Article  MATH  Google Scholar 

  65. Rispoli, F., Saavedra, R.: A stabilized finite element method based on SGS models for compressible flows. Comput. Methods Appl. Mech. Eng. 196, 652–664 (2006)

    Article  MATH  Google Scholar 

  66. Rispoli, F., Saavedra, R., Corsini, A., Tezduyar, T.E.: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int. J. Numer. Methods Fluids 54, 695–706 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  67. Scovazzi, G.: A discourse on Galilean invariance and SUPG-type stabilization. Comput. Methods Appl. Mech. Eng. 196(4–6), 1108–1132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  68. Scovazzi, G.: Galilean invariance and stabilized methods for compressible flows. Int. J. Numer. Methods Fluids 54(6–8), 757–778 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Scovazzi, G.: Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations. Comput. Methods Appl. Mech. Eng. 196(4–6), 966–978 (2007)

    Google Scholar 

  70. Scovazzi, G., Christon, M.A., Hughes, T.J.R., Shadid, J.N.: Stabilized shock hydrodynamics: I. A Lagrangian method. Comput. Methods Appl. Mech. Eng. 196(46), 923–966 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  71. Shakib, F., Hughes, T.J.R.: A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng. 87, 35–58 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  72. Shakib, F., Hughes, T.J.R., Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 89, 141–219 (1991)

    Article  MathSciNet  Google Scholar 

  73. Spradley, L.W., Stalnaker, J.F., Ratliff, A.W.: Computation of three-dimensional viscous flows with the Navier-Stokes equations. In: AIAA-80-1348. AIAA 13th Fluid and Plasma Dynamics Conference, Snowmass, Colorado (1980)

  74. Szepessy, A.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  75. Tabata, M.: A finite element approximation corrresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)

    MATH  MathSciNet  Google Scholar 

  76. Tabata, M.: Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J. Math. Kyoto Univ. 18, 327–351 (1978)

    MATH  MathSciNet  Google Scholar 

  77. Tabata, M.: Some applications of the upwind finite element method. Theor. Appl. Mech. 27, 277–282 (1979)

    Google Scholar 

  78. Tabata, M.: Symmetric finite element approximations for convection-diffusion problems. Theor. Appl. Mech. 33, 445–453 (1985)

    MATH  Google Scholar 

  79. Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., Litke, M.: Flow simulation and high performance computing. Comput. Mech. 18, 397–412 (1996)

    Article  MATH  Google Scholar 

  80. Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26(10), 27–36 (1993)

    Article  Google Scholar 

  81. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  82. Tezduyar, T.E.: Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), Swansea, Wales, United Kingdom (2001)

  83. Tezduyar, T.E.: Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the First South-American Congress on Computational Mechanics (CD-ROM), Santa Fe–Parana, Argentina (2002)

  84. Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  85. Tezduyar, T.E.: Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyäskylä, Finland (2004)

  86. Tezduyar, T.E.: Finite element methods for fluid dynamics with moving boundaries and iterfaces. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3. Wiley, New York (2004), Fluids, Chap. 17

    Google Scholar 

  87. Tezduyar, T.E.: Calculation of the stabilization parameters in finite element formulations of flow problems. In: Idelsohn, S., Sonzogni, V. (eds.) Applications of Computational Mechanics in Structures and Fluids, pp. 1–19. CIMNE, Barcelona (2005)

    Google Scholar 

  88. Tezduyar, T.E., Aliabadi, S.K., Behr, M., Mittal, S.: Massively parallel finite element simulation of compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 119, 157–177 (1994)

    Article  MATH  Google Scholar 

  89. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94, 339–351 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  90. Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94, 353–371 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  91. Tezduyar, T.E., Hughes, T.J.R.: Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA (1982). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_1997034954.pdf

  92. Tezduyar, T.E., Hughes, T.J.R.: Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada (1983)

  93. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000)

    Article  MATH  Google Scholar 

  94. Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986)

    Article  MATH  Google Scholar 

  95. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  96. Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput. Fluids 36, 147–159 (2007)

    Article  MATH  Google Scholar 

  97. Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the supg formulation and YZβ shock-capturing. Comput. Mech. 38, 469–481 (2006)

    Article  MATH  Google Scholar 

  98. Venkatakrishnan, V., Allmaras, S., Kamenetskii, D., Johnson, F.: Higher order schemes for the compressible Navier-Stokes equations. In: AIAA 2003-3987. AIAA 16th Computational Fluid Dynamics Conference, Orlando, Florida, 23–26 June 2003

  99. Whiting, C.H., Jansen, K.E., Dey, S.: Hierarchical basis for stabilized finite element methods for compressible flows. Comput. Methods Appl. Mech. Eng. 192, 5167–5185 (2003)

    Article  MATH  Google Scholar 

  100. Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equation at low Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Scovazzi.

Additional information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DEAC04-94-AL85000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, T.J.R., Scovazzi, G. & Tezduyar, T.E. Stabilized Methods for Compressible Flows. J Sci Comput 43, 343–368 (2010). https://doi.org/10.1007/s10915-008-9233-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9233-5

Keywords

Navigation