Abstract
This article reviews 25 years of research of the authors and their collaborators on stabilized methods for compressible flow computations. An historical perspective is adopted to document the main advances from the initial developments to modern approaches.
Similar content being viewed by others
References
Aliabadi, S.K., Ray, S.E., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Mech. 11, 300–312 (1993)
Aliabadi, S.K., Tezduyar, T.E.: Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 107(1–2), 209–223 (1993)
Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)
Baba, K., Tabata, M.: On a conservative upwind finite element scheme for the convective diffusion equations. RAIRO. Anal. Numér. 27, 277–282 (1981)
Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)
Buning, P.G., Jespersen, D.C., Pulliam, T.H., Klopfer, G.H., Chan, W.M., Slotnick, J.P., Krist, S.E., Renze, K.J.: OVERFLOW User’s Manual, Version 1.8s, 28 November 2000. NASA Langley Research Center, Hampton, Virginia (2000)
Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow SUPG parameters computed from element matrices. Commun. Numer. Methods Eng. 21, 465–476 (2005)
Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow supg parameters computed from degree-of-freedom submatrices. Comput. Mech. 38, 334–343 (2006)
Chalot, F.E.: Industrial aerodynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)
Chalot, F.E., Hughes, T.J.R.: A consistent equilibrium chemistry algorithm for hypersonic flows. Comput. Methods Appl. Mech. Eng. 112, 25–40 (1994)
Christie, I., Griffiths, D.F., Sanz-Serna, J.M.: Product approximantion for non-linear problems in the finite element method. IMA J. Numer. Anal. 1, 253–266 (1981)
Corsini, A., Rispoli, F., Santoriello, A.: A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput. Methods Appl. Mech. Eng. 194, 4797–4823 (2005)
Corsini, A., Rispoli, F., Santoriello, A., Tezduyar, T.E.: Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput. Mech. 38, 356–364 (2006)
Estep, D., French, D.A.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO. Numer. Anal. 28, 815–852 (1994)
Fletcher, C.A.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225–244 (1983)
Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)
French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107, 145–157 (1993)
French, D.A.: Continuous Galerkin finite element methods for a forward-backward heat equation. Numer. Methods Partial Differ. Equ. 15, 491–506 (1999)
French, D.A., Jensen, S.: Long time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems. IMA J. Numer. Anal. 14, 421–442 (1994)
French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 65, 491–506 (1996)
Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961)
Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983)
Hauke, G.: A unified approach to compressible and incompressible flows and a new entropy-consistent formulation of the κ-ε model. Ph.D. thesis, Mechanical Engineering Department, Stanford University (1995)
Hauke, G.: Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput. Methods Appl. Mech. Eng. 190, 6881–6893 (2001)
Hauke, G., Hughes, T.J.R.: A unified approach to compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 113, 389–396 (1994)
Hauke, G., Hughes, T.J.R.: A comparative study of different sets of variables for solving compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 153, 1–44 (1998)
Hoffman, J., Johnson, C.: Computability and adaptivity in cfd. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)
Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)
Hughes, T.J.R., Feijóo, G., Mazzei, L., Quincy, J.-B.: The Variational Multiscale Method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)
Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)
Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)
Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987)
Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)
Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 329–336 (1986)
Hughes, T.J.R., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986)
Hughes, T.J.R., Mazzei, L., Jensen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(47), 147–162 (2000)
Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.: The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence. Phys. Fluids 13, 505–512 (2001)
Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6), 1784–1799 (2001)
Hughes, T.J.R., Scovazzi, G., Franca, L.P.: Multiscale and stabilized methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)
Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984)
Hughes, T.J.R., Winget, J., Levit, I., Tezduyar, T.E.: New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. In: Atluri, S., Perrone, N. (eds.) Computer Methods for Nonlinear Solids and Structural Mechanics. AMD, vol. 54, pp. 75–109. ASME, New York (1983)
Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26(120), 881–891 (1972)
Jamet, P.: Stability and convergence of a generalized Crank-Nicolson scheme on a variable mesh for the heat equation. SIAM J. Numer. Anal. 17(4), 530–539 (1980)
Jansen, K.E.: A stabilized finite element method for computing turbulence. Comput. Methods Appl. Mech. Eng. 174, 299–317 (1999)
Jansen, K.E., Hughes, T.J.R.: A stabilized finite element method for the Reynolds-averaged Navier-Stokes equations. Surv. Math. Ind. 4, 279–317 (1995)
Jansen, K.E., Johan, Z., Hughes, T.J.R.: Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system. Comput. Methods Appl. Mech. Eng. 105, 405–433 (1993)
Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000)
Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: A data parallel finite element method for computational fluid dynamics on the Connection Machine system. Comput. Methods Appl. Mech. Eng. 99, 113–134 (1992)
Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: An efficient communications strategy for finite element methods on the Connection Machine CM-5 system. Comput. Methods Appl. Mech. Eng. 113, 363–387 (1994)
Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: Scalability of finite element applications on distributed-memory parallel computers. Comput. Methods Appl. Mech. Eng. 119, 61–72 (1994)
Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107, 117–129 (1993)
Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)
Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49, 427–444 (1987)
Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54, 107–129 (1990)
Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993)
Le Beau, G.J., Tezduyar, T.E.: Finite element computation of compressible flows with the SUPG formulation. In: Advances in Finite Element Analysis in Fluid Dynamics. FED, vol. 123, pp. 21–27. ASME, New York (1991)
Le Beau, G.J., Tezduyar, T.E.: Finite element solution of flow problems with mixed-time integration. J. Eng. Mech. 117, 1311–1330 (1991)
Masud, A.: Effects of mesh motion on the stability and convergence of ALE based formulations for moving boundary flows. Comput. Mech. 38(4–5), 430–439 (2006)
Mittal, S., Aliabadi, S., Tezduyar, T.: Parallel computation of unsteady compressible flows with the EDICT. Comput. Mech. 23, 151–157 (1999)
Mittal, S., Tezduyar, T.: A unified finite element formulation for compressible and incompressible flows using augumented conservation variables. Comput. Methods Appl. Mech. Eng. 161, 229–243 (1998)
Moch, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37, 70–88 (1980)
Rifai, S.M., Buell, J.C., Johan, Z., Hughes, T.J.R.: Automotive design applications of fluid flow simulation on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 184, 449–466 (2000)
Rifai, S.M., Johan, Z., Wang, W.-P., Grisval, J.-P., Hughes, T.J.R., Ferencz, R.M.: Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 174, 393–417 (1999)
Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007)
Rispoli, F., Saavedra, R.: A stabilized finite element method based on SGS models for compressible flows. Comput. Methods Appl. Mech. Eng. 196, 652–664 (2006)
Rispoli, F., Saavedra, R., Corsini, A., Tezduyar, T.E.: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int. J. Numer. Methods Fluids 54, 695–706 (2007)
Scovazzi, G.: A discourse on Galilean invariance and SUPG-type stabilization. Comput. Methods Appl. Mech. Eng. 196(4–6), 1108–1132 (2007)
Scovazzi, G.: Galilean invariance and stabilized methods for compressible flows. Int. J. Numer. Methods Fluids 54(6–8), 757–778 (2007)
Scovazzi, G.: Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations. Comput. Methods Appl. Mech. Eng. 196(4–6), 966–978 (2007)
Scovazzi, G., Christon, M.A., Hughes, T.J.R., Shadid, J.N.: Stabilized shock hydrodynamics: I. A Lagrangian method. Comput. Methods Appl. Mech. Eng. 196(46), 923–966 (2007)
Shakib, F., Hughes, T.J.R.: A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng. 87, 35–58 (1991)
Shakib, F., Hughes, T.J.R., Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 89, 141–219 (1991)
Spradley, L.W., Stalnaker, J.F., Ratliff, A.W.: Computation of three-dimensional viscous flows with the Navier-Stokes equations. In: AIAA-80-1348. AIAA 13th Fluid and Plasma Dynamics Conference, Snowmass, Colorado (1980)
Szepessy, A.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989)
Tabata, M.: A finite element approximation corrresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)
Tabata, M.: Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J. Math. Kyoto Univ. 18, 327–351 (1978)
Tabata, M.: Some applications of the upwind finite element method. Theor. Appl. Mech. 27, 277–282 (1979)
Tabata, M.: Symmetric finite element approximations for convection-diffusion problems. Theor. Appl. Mech. 33, 445–453 (1985)
Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., Litke, M.: Flow simulation and high performance computing. Comput. Mech. 18, 397–412 (1996)
Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26(10), 27–36 (1993)
Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992)
Tezduyar, T.E.: Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), Swansea, Wales, United Kingdom (2001)
Tezduyar, T.E.: Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the First South-American Congress on Computational Mechanics (CD-ROM), Santa Fe–Parana, Argentina (2002)
Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003)
Tezduyar, T.E.: Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyäskylä, Finland (2004)
Tezduyar, T.E.: Finite element methods for fluid dynamics with moving boundaries and iterfaces. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3. Wiley, New York (2004), Fluids, Chap. 17
Tezduyar, T.E.: Calculation of the stabilization parameters in finite element formulations of flow problems. In: Idelsohn, S., Sonzogni, V. (eds.) Applications of Computational Mechanics in Structures and Fluids, pp. 1–19. CIMNE, Barcelona (2005)
Tezduyar, T.E., Aliabadi, S.K., Behr, M., Mittal, S.: Massively parallel finite element simulation of compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 119, 157–177 (1994)
Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94, 339–351 (1992)
Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94, 353–371 (1992)
Tezduyar, T.E., Hughes, T.J.R.: Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA (1982). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_1997034954.pdf
Tezduyar, T.E., Hughes, T.J.R.: Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada (1983)
Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000)
Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986)
Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006)
Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput. Fluids 36, 147–159 (2007)
Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the supg formulation and YZβ shock-capturing. Comput. Mech. 38, 469–481 (2006)
Venkatakrishnan, V., Allmaras, S., Kamenetskii, D., Johnson, F.: Higher order schemes for the compressible Navier-Stokes equations. In: AIAA 2003-3987. AIAA 16th Computational Fluid Dynamics Conference, Orlando, Florida, 23–26 June 2003
Whiting, C.H., Jansen, K.E., Dey, S.: Hierarchical basis for stabilized finite element methods for compressible flows. Comput. Methods Appl. Mech. Eng. 192, 5167–5185 (2003)
Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equation at low Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DEAC04-94-AL85000.
Rights and permissions
About this article
Cite this article
Hughes, T.J.R., Scovazzi, G. & Tezduyar, T.E. Stabilized Methods for Compressible Flows. J Sci Comput 43, 343–368 (2010). https://doi.org/10.1007/s10915-008-9233-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-008-9233-5