iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10851-015-0602-Z
Quantization-Unaware Double JPEG Compression Detection | Journal of Mathematical Imaging and Vision Skip to main content
Log in

Quantization-Unaware Double JPEG Compression Detection

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The current double JPEG compression detection techniques identify whether or not an JPEG image file has undergone the compression twice, by knowing its embedded quantization table. This paper addresses another forensic scenario in which the quantization table of a JPEG file is not explicitly or reliably known, which may compel the forensic analyst to blindly reveal the recompression clues. To do this, we first statistically analyze the theory behind quantized alternating current (AC) modes in JPEG compression and show that the number of quantized AC modes required to detect double compression is a function of both the image’s block texture and the compression’s quality level in a fresh formulation. Consequently, a new double compression detection algorithm is proposed that exploits footprints introduced by all non-zero and zero AC modes based on Benford’s law in a low-dimensional representation via PCA. Then, some evaluation frameworks are constructed to assess the robustness and generalization of the proposed method on various textured images belonging to three standard databases as well as different compression quality level settings. The average \(F_{1}\text {-measure}\) score on all tested databases in the proposed method is about 74 % much better than the state-of-the-art performance of 67.7 %. The proposed algorithm is also applicable to detect double compression from a JPEG file and localize tampered regions in actual image forgery scenarios. An implementation of our algorithms and used databases are available upon request to fellow researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.impulseadventure.com/photo/jpeg-quantization.html.

  2. http://homepages.lboro.ac.uk/~cogs/datasets/ucid/data/ucid.v2.tar.gz.

  3. http://www.shsu.edu/~qxl005/New/Downloads/never_compressed_images.zip.

  4. http://tabby.vision.mcgill.ca.

  5. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

  6. RCID database is publicly available to fellow academic researchers. To access it, please contact behrad@shahed.ac.ir.

References

  1. Berger, A., Hill, T.P.: A basic theory of Benford’s law. Probab. Surv. 8, 1–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchi, T., Piva, A.: Detection of nonaligned double JPEG compression based on integer periodicity maps. IEEE Trans. Inf. Forensics Secur. 7(2), 842–848 (2012)

    Article  Google Scholar 

  3. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  5. Chen, C., Shi, Y.Q., Su, W.: A machine learning based scheme for double JPEG compression detection. In: IEEE 19th international conference on pattern recognition (ICPR), pp. 1–4 (2008)

  6. Dong, L., Kong, X., Wang, B., You, X.: Double compression detection based on Markov model of the first digits of DCT coefficients. In: IEEE 6th international conference on image and graphics (ICIG), pp. 234–237 (2011)

  7. Fan, Z., de Queiroz, R.L.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process. 12(2), 230–235 (2003)

    Article  Google Scholar 

  8. Farid, H.: Digital image ballistics from JPEG quantization. Technical Report TR2006-583, Department of Computer Science, Dartmouth College (2006)

  9. Farid, H.: Exposing digital forgeries from JPEG ghosts. IEEE Trans. Inform. Forensics. Secur. 4(1), 154–160 (2009)

    Article  MathSciNet  Google Scholar 

  10. Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)

    Article  Google Scholar 

  11. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)

    Article  Google Scholar 

  12. Hasimoto-Beltrán, R., Baqai, S., Khokhar, A.: Transform domain inter-block interleaving schemes for robust image and video transmission in ATM networks. J. Vis. Commun. Image Represent. 15(4), 522–547 (2004)

    Article  Google Scholar 

  13. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  14. Huang, F., Huang, J., Shi, Y.Q.: Detecting double JPEG compression with the same quantization matrix. IEEE Trans. Inform. Forensics Secur. 5(4), 848–856 (2010)

    Article  Google Scholar 

  15. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, Inc., New York (1995)

    Google Scholar 

  16. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics, Springer (2002)

    MATH  Google Scholar 

  17. Kornblum, J.D.: Using JPEG quantization tables to identify imagery processed by software. The 8th digital forensic research workshop. Digit. Investig. 5, S21–S25 (2008)

    Article  Google Scholar 

  18. Lai, S., Böhme, R.: Block convergence in repeated transform coding: JPEG-100 forensics, carbon dating, and tamper detection. In: IEEE 38th international conference on acoustics, speech and signal processing (ICASSP), pp. 3028–3032. IEEE (2013)

  19. Li, B., Ng, T.T., Li, X., Tan, S., Huang, J.: Revealing the trace of high-quality JPEG compression through quantization noise analysis. IEEE Trans. Inf. Forensics Secur. 10(3), 558–573 (2015)

    Article  Google Scholar 

  20. Li, B., Shi, Y.Q., Huang, J.: Detecting doubly compressed JPEG images by using mode based first digit features. In: IEEE 10th workshop on multimedia signal processing, pp. 730–735 (2008)

  21. Lin, X.H., Zhao, Y.Q., Huang, J.: Detection of tampered region for JPEG images by using mode-based first digit features. EURASIP J. Adv. Signal. Process. 2012, 1–10 (2012)

    Article  MATH  Google Scholar 

  22. Lin, Z., He, J., Tang, X., Tang, C.K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognit. 42(11), 2492–2501 (2009)

    Article  MATH  Google Scholar 

  23. Liu, Q., Sung, A.H., Qiao, M.: A method to detect JPEG-based double compression. In: The 8th international conference on advances in neural networks, lecture notes in computer science, Part II, pp. 466–476 (2011)

  24. Liu, Q., Sung, A.H., Qiao, M.: Neighboring joint density-based JPEG steganalysis. ACM Trans. Intell. Syst. Technol. 2(2), 16 (2011)

    Article  Google Scholar 

  25. Luo, W., Huang, J., Qiu, G.: JPEG error analysis and its applications to digital image forensics. IEEE Trans. Inf. Forensics Secur. 5(3), 480–491 (2010)

    Article  Google Scholar 

  26. Mahdian, B., Saic, S.: Detecting double compressed JPEG images. In: IEEE 3rd international conference on crime detection and prevention, pp. 1–6 (2009)

  27. Milani, S., Tagliasacchi, M., Tubaro, S.: Discriminating multiple JPEG compression using first digit features. In: IEEE 37th international conference on acoustics, speech and signal processing (ICASSP), pp. 2253–2256 (2012)

  28. Narayanan, G., Shi, Y.Q.: A statistical model for quantized AC block DCT coefficients in JPEG compression and its application to detecting potential compression history in bitmap images. In: The 9th international workshop on digital watermarking, lecture notes in computer science, vol. 6526, pp. 75–89 (2011)

  29. Olmos, A., Kingdom, F.A.A.: A biologically inspired algorithm for the recovery of shading and reflectance images. Perception 33(12), 1463–1473 (2004)

    Article  Google Scholar 

  30. Pérez-González, F., Heileman, G.L., Abdallah, C.T.: Benford’s law in image processing. In: IEEE international conference on image processing (ICIP), vol. 1, pp. I-405–I-408 (2007)

  31. Pevný, T., Fridrich, J.: Detection of double-compression in JPEG images for applications in steganography. IEEE Trans. Inf. Forensics Secur. 3(2), 247–258 (2008)

    Article  Google Scholar 

  32. Piva, A.: An overview on image forensics. ISRN Signal Processing p. article ID 496701 (2013)

  33. Popescu, A.C., Farid, H.: Statistical Tools for Digital Forensics. In: The 6th international workshop on information hiding, lecture notes in computer science, vol. 3200, pp. 128–147 (2005)

  34. Schaefer, G., Stich, M.: UCID: an uncompressed color image database. Storage Retr. Methods Appl. Multimed. 5307, 472–480 (2004)

    Google Scholar 

  35. Sencar, H.T., Memon, N.: Identification and recovery of JPEG files with missing fragments. Digit. Investig. 6, S88–S98 (2009)

    Article  Google Scholar 

  36. Taimori, A., Razzazi, F., Behrad, A., Ahmadi, A., Babaie-Zadeh, M.: A proper transform for satisfying Benford’s law and its application to double JPEG image forensics. In: IEEE international symposium on signal processing and information technology (ISSPIT), pp. 000240–000244 (2012)

  37. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electronics 38(1), 30–44 (1992)

    Article  Google Scholar 

  38. Zach, F., Riess, C., Angelopoulou, E.: Automated image forgery detection through classification of JPEG ghosts. In: Proceedings of joint 34th DAGM and 36th OAGM symposium, lecture notes in computer science, vol. 7476, pp. 185–194 (2012)

Download references

Acknowledgments

The authors would like to thank S. Sabouri for her valuable comments which help us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Taimori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimori, A., Razzazi, F., Behrad, A. et al. Quantization-Unaware Double JPEG Compression Detection. J Math Imaging Vis 54, 269–286 (2016). https://doi.org/10.1007/s10851-015-0602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0602-z

Keywords

Navigation