iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10846-012-9747-9
Tracking a Ground Moving Target with a Quadrotor Using Switching Control | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Tracking a Ground Moving Target with a Quadrotor Using Switching Control

Nonlinear Modeling and Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An unmanned aerial vehicle (UAV) stabilization strategy based on computer vision and switching controllers is proposed. The main goal of this system is to perform tracking of a moving target on ground. The architecture implemented consists of a quadrotor equipped with an embedded camera which provides real-time video to a computer vision algorithm where images are processed. A vision-based estimator is proposed, which makes use of 2-dimensional images to compute the relative 3-dimensional position and translational velocity of the UAV with respect to the target. The proposed estimator provides the required states measurements to a micro-controller for stabilizing the vehicle during flight. The control strategy consists of switching controllers, which allows making decisions when the target is lost temporarily or when it is out of the camera’s field of view. Real time experiments are presented to demonstrate the performance of the target-tracking system proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aguiar, A.P., Hespanha, J.P.: Minimum-energy state estimation for systems with perspective outputs. IEEE Trans. Automat. Contr. 51(2), 226–241 (2006)

    Article  MathSciNet  Google Scholar 

  2. Allen, P.K., Timcenko, A., Yoshimi, B., Michelman, P.: Trajectory filtering and prediction for automated tracking and grasping of a moving object. In: Proc. IEEE Conference on Robotics and Automation, pp. 1850–1856 (1992)

  3. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Boston, MA (1988)

    MATH  Google Scholar 

  4. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27, 433–467 (1995)

    Article  Google Scholar 

  5. Bouabdallah, S., Siegwart, R.: Backstepping andd sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2259–2264 (2005)

  6. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker description of the algorithm. Tech. Rep., Intel Corporation Microprocessor Research Labs (2000)

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)

    Article  Google Scholar 

  8. Carrillo, L.G., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad rotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011)

    Article  Google Scholar 

  9. Chitrakaran, V.K., Dawson, D.M., Dixon, W.E., Chen, J.: Identification of a moving objects velocity with a fixed camera. Automatica 41(3), 553–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, B.K., Loucks, E.P.: A realization theory for perspective systems with application to parameter estimation problems in machine vision. IEEE Trans. Automat. Contr. 41, 1706–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomez-Balderas, J., Castillo, P., Guerrero, J., Lozano, R.: Vision based tracking for a quadrotor using vanishing points. J. Intell. Robot. Syst. 65, 361–371 (2012)

    Article  Google Scholar 

  12. Gomez-Balderas, J., Salazar, S., Guerrero, J., Lozano, R.: Vision based autonomous hover of a mini-rotorcraft. In: Unmanned Aerial Vehicles Symposium, Dubai (2010)

  13. Hashimoto, K., Noritsugu, T.: Observer-based control for visual servoing. In: Proc. 13th IFAC World Congress, San Francisco, California, pp. 453–458 (1996)

  14. Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior - a uav tracking and monitoring application. In: 10th International Conference on Information Fusion, 9–12 July 2007

  15. Hong, L., Cui, N., Pronobis, M.T., Scott, S.: Simultaneous ground moving target tracking and identification using q wavelets features from hrr data. Inf. Sci. 162, 249–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hwang, I., Roy, K., Balakrishnan, H., Tomlin, C.: A distributed multiple-target identity management algorithm in sensor networks. In: Proceedings of the 43rd IEEE Conference on Decision and Control (2010)

  17. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  18. Koivo, A.J., Houshangi, N.: Real-time vision feedback for servoing robotic manipulator with self-tuning controller. IEEE Trans. Syst. Man Cybern. 21, 134–142 (1991)

    Article  Google Scholar 

  19. Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, Siam, London (1999)

    Book  MATH  Google Scholar 

  20. Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J.K.: Strategies of path-planning for a uav to track a ground vehicle. In: Proceedings of the 2nd annual Autonomous Intelligent Networks and Systems Conference (2003)

  21. Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)

    MATH  Google Scholar 

  22. Martinez, S., Bullo, F.: Optimal sensor placement and motion coordination for target tracking. Automatica 42(4), 661–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ponda, S.S., Kolacinski, R.M., Frazzoli, E.: Trajectory optimization for target localization using small unmanned aerial vehicles. In: AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, USA, pp. 10–13 (2009)

  24. Rafi, F., Khan, S., Shafiq, K., Shah, M.: Autonomous target following by unmanned aerial vehicles. Unmanned systems technology. Conference No. 8 USA 6230(2) (2006)

  25. Schmitt, T., Hanek, R., Beetz, M., Buck, S., Radig, B.: Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Trans. Robot. Autom. 18(5), 670–684 (2002)

    Article  Google Scholar 

  26. Shariat, H., Price, K.: Motion estimation with more than two frames. In: IEEE Transactions on PAMI, vol. 12, pp. 417–434 (1990)

  27. Shell, M.: Rabbit semiconductors, dynamics c user manual. Digi International Inc. (2011). http://www.rabbitsemiconductor.com

  28. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall (1990)

  29. Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: Int. Conference on Intelligent Robots and Systems, IROS, San Francisco, CA, pp. 4929–4934, 25–30 Sept 2011

  30. Wise, R., Rysdyk, R.: Uav coordination for autonomous target tracking. In: Proceedings of the AIAA Guidance, Navigation and Control (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Gomez-Balderas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Balderas, J.E., Flores, G., García Carrillo, L.R. et al. Tracking a Ground Moving Target with a Quadrotor Using Switching Control. J Intell Robot Syst 70, 65–78 (2013). https://doi.org/10.1007/s10846-012-9747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9747-9

Keywords

Navigation