iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10827-010-0220-0
Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling | Journal of Computational Neuroscience Skip to main content

Advertisement

Log in

Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We describe a computational method for assessing functional connectivity in sensory neuronal networks. The method, which we term cross-trial correlation, can be applied to signals representing local field potentials (LFPs) evoked by sensory stimulations and utilizes their trial-to-trial variability. A set of single trial samples of a given post-stimulus latency from consecutive evoked potentials (EPs) recorded at a given site is correlated with such sets for all other latencies and recording sites. The results of this computation reveal how neuronal activities at various sites and latencies correspond to activation of other sites at other latencies. The method was used to investigate the functional connectivity of thalamo-cortical network of somatosensory system in behaving rats at two levels of alertness: habituated and aroused. We analyzed potentials evoked by vibrissal deflections recorded simultaneously from the ventrobasal thalamus and barrel cortex. The cross-trial correlation analysis applied to the early post-stimulus period (<25 ms) showed that the magnitude of the population spike recorded in the thalamus at 5 ms post-stimulus correlated with the cortical activation at 6–13 ms post-stimulus. This correlation value was reduced at 6–9 ms, i.e. at early postsynaptic cortical response, with increased level of the animals’ arousal. Similarly, the aroused state diminished positive thalamo-cortical correlation for subsequent early EP waves, whereas the efficacy of an indirect cortico-fugal inhibition (over 15 ms) did not change significantly. Thus we were able to characterize the state related changes of functional connections within the thalamo-cortical network of behaving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aertsen, A. M., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation: modulation of “effective connectivity”. Journal of Neurophysiology, 61(5), 900–917.

    CAS  PubMed  Google Scholar 

  • Aguilar, J. R., & Castro-Alamancos, M. A. (2005). Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states. Journal of Neuroscience, 25, 10990–11002.

    Article  CAS  PubMed  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273, 1868–1871.

    Article  CAS  PubMed  Google Scholar 

  • Arnhold, J., Grassberger, P., Lehnertz, K., & Elger, C. E. (1999). A robust method for detecting interdependencies: application to intracranially recorded EEG. Physica D, 134, 419–430.

    Article  Google Scholar 

  • Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84.

    Article  PubMed  Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Castro-Alamancos, M. A. (2004a). Dynamics of sensory thalamocortical synaptic networks during information processing states. Progress in Neurobiology, 74(4), 213–247.

    Article  PubMed  Google Scholar 

  • Castro-Alamancos, M. A. (2004b). Absence of rapid sensory adaptation in neocortex during information processing states. Neuron, 41, 455–464.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alamancos, M. A., & Oldford, E. (2002). Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. Journal of Physiology, 541(1), 319–331.

    Article  CAS  PubMed  Google Scholar 

  • Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Fanselow, E. E., Sameshima, K., Baccala, L. A., & Nicolelis, M. A. (2001). Thalamic bursting in rats during different awake behavioral states. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15330–15335.

    Article  CAS  PubMed  Google Scholar 

  • Fontanini, A., & Katz, D. B. (2005). 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. Journal of Neurophysiology, 93(5), 2832–2840.

    Article  PubMed  Google Scholar 

  • Gerstein, G. L., & Aertsen, A. M. (1985). Representation of cooperative firing activity among simultaneously recorded neurons. Journal of Neurophysiology, 54, 1513–1528.

    CAS  PubMed  Google Scholar 

  • Gerstein, G. L., Perkel, D. H., & Dayhoff, J. E. (1985). Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. Journal of Neuroscience, 5, 881–889.

    CAS  PubMed  Google Scholar 

  • Gil, Z., Connors, B. W., & Amitai, Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 19, 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 67(1), 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Katz, Y., Heiss, J. E., & Lampl, I. (2006). Cross-whisker adaptation of neurons in the rat barrel cortex. Journal of Neuroscience, 26(51), 13363–13372.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, F. (2000). Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neuroscience Research, 38, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Kisley, M. A., & Gerstein, G. L. (1999). Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. Journal of Neuroscience, 19, 10451–10460.

    CAS  PubMed  Google Scholar 

  • Korzeniewska, A., Crainiceanu, C. M., Kuś, R., Franaszczuk, P. J., & Crone, N. E. (2008). Dynamics of event-related causality in brain electrical activity. Human Brain Mapping, 29, 1170–1192.

    Article  PubMed  Google Scholar 

  • Kublik, E. (2004). Contextual impact on sensory processing at the barrel cortex of awake rat. Acta Neurobiologiae Experimentalis (Wars), 64, 229–238.

    Google Scholar 

  • Kublik, E., Musiał, P., & Wróbel, A. (2001). Identification of principal components in cortical evoked potentials by brief surface cooling. Clinical Neurophysiology, 112, 1720–1725.

    Article  CAS  PubMed  Google Scholar 

  • Kublik, E., Świejkowski, D. A., & Wróbel, A. (2003). Cortical contribution to sensory volleys recorded at thalamic nuclei of lemniscal and paralemniscal pathways. Acta Neurobiologiae Experimentalis (Wars), 63, 377–382.

    Google Scholar 

  • Lachaux, J., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208.

    Article  CAS  PubMed  Google Scholar 

  • Landisman, C. E., & Connors, B. W. (2007). VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cerebral Cortex, 17(12), 2853–2865.

    Article  PubMed  Google Scholar 

  • Łęski, S., & Wójcik, D. K. (2008). Inferring coupling strength from event-related dynamics. Physical Review E, 78, 041918.

    Article  Google Scholar 

  • Łęski, S., Kublik, E., Świejkowski, D. A., Wróbel, A., Wójcik, D. K. (2009). Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. doi:10.1007/s10827-009-0203-1

  • McCormick, D. A. (1993). Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. Progress in Brain Research, 98, 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Musiał, P., Kublik, E., & Wróbel, A. (1998). Spontaneous variability reveals principal components in cortical evoked potentials. NeuroReport, 9, 2627–2631.

    Article  PubMed  Google Scholar 

  • Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike trains and stochastic point processes. Biophysical Journal, 7, 419–440.

    Article  CAS  PubMed  Google Scholar 

  • Quian Quiroga, R., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Physical Review E, 65, 041903.

    Article  CAS  Google Scholar 

  • Rigas, P., & Castro-Alamancos, M. A. (2009). Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs. J Neurophysiol, 102, 119–131.

    Article  PubMed  Google Scholar 

  • Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic oscillators. Physical Review Letters, 76, 1804–1807.

    Article  CAS  PubMed  Google Scholar 

  • Sato, H., Hata, Y., Masui, H., & Tsumoto, T. (1987). A functional role of cholinergic innervation to neurons in the cat visual cortex. Journal of Neurophysiology, 58(4), 765–780.

    CAS  PubMed  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Sillito, A. M., & Kemp, J. A. (1983). Cholinergic modulation of the functional organization of the cat visual cortex. Brain Research, 289(1–2), 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. (1997). Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex, 7, 583–604.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M., & Timofeev, I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron, 37(4), 563–576.

    Article  CAS  PubMed  Google Scholar 

  • Stoelzel, C. R., Bereshpolova, Y., & Swadlow, H. A. (2009). Stability of thalamocortical synaptic transmission across awake brain states. Journal of Neuroscience, 29(21), 6851–6859.

    Article  CAS  PubMed  Google Scholar 

  • Waite, P. M. E. (2004). Trigeminal sensory system. In G. Paxinos (Ed.), The rat nervous system. Third edition (pp. 817–851). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Wróbel, A., Kublik, E., & Musiał, P. (1998). Gating of the sensory activity within barrel cortex of the awake rat. Experimental Brain Research, 123, 117–123.

    Article  Google Scholar 

  • Wróbel, A., Ghazaryan, A., Bekisz, M., Bogdan, W., & Kamiński, J. (2007). Two streams of attention-dependent beta activity in the striate recipient zone of cat’s lateral posterior-pulvinar complex. Journal of Neuroscience, 27, 2230–2240.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor George L. Gerstein for consultation on the cross-trial correlation method.

The work was supported by the Polish Ministry of Science and Higher Education Grants: 46/N-COST/2007/0 and PBZ/MNiSW/07/2006/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Sobolewski.

Additional information

Action Editor: Eberhard Fetz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolewski, A., Kublik, E., Świejkowski, D.A. et al. Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling. J Comput Neurosci 29, 485–493 (2010). https://doi.org/10.1007/s10827-010-0220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0220-0

Keywords

Navigation