iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10766-017-0552-8
Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation | International Journal of Parallel Programming Skip to main content
Log in

Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Appropriate representation is one of the keys to successful face recognition technologies. Actual facial appearance sometimes differs dramatically because of variations in pose, illumination, expression, and occlusion. However, existing face representation methods remain insufficiently powerful and robust. Hence, we propose a new feature extraction approach for face representation based on heat kernel volume and local binary patterns. Multi-scale heat kernel faces are created in our proposed framework. We then reformulate these multi-scale heat kernel faces as three-dimensional volume. Furthermore, we generate multi-orientation planes from the heat kernel volume, which reflects orientation co-occurrence statistics among different heat kernel faces. Finally, we apply local binary pattern (LBP) analysis on the multi-orientation planes of the heat kernel volume to capture the microstructure and macrostructure of face appearance. Hence, we obtain the heat kernel volume based local binary pattern on multi-orientation planes (HKV–LBP–MOP) descriptor. The proposed method is successfully be paralleled. We applied the method to face recognition and obtain the performance of 99.28 and 87.82% on ORL and Yale databases respectively. Experimental results on the show that the proposed algorithm significantly outperforms other well-known approaches in terms of recognition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 586–591, CVPR (1991)

  2. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)

    Article  Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenface vs. Fisherface: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  5. Ye, J.: Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. 6, 483–502 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Sugiyama, M., Roweis, S.: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. 8, 1027–1061 (2007)

    MATH  Google Scholar 

  7. Li, J., Tao, D.: Simple exponential family PCA. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 485–497 (2013)

    Article  Google Scholar 

  8. Chen, L.F., et al.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit. 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  9. He, X.F., et al.: Face recognition using Laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  MathSciNet  Google Scholar 

  10. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)

    Article  Google Scholar 

  11. Wiskott, L., Fellous, J., Kruger, N., Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)

    Article  Google Scholar 

  12. Liu, J., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans. Image Proc. 11(4), 467–476 (2002)

    Article  Google Scholar 

  13. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29, 51–59 (1996)

    Article  Google Scholar 

  14. Zhang, W. et al.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: IEEE International Conference on Computer Vision, pp. 786–791 (2015)

  15. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  16. Lei, Z., Liao, S., He, R.: Gabor volume based local binary pattern for face representation and recognition. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pp. 564–569 (2008)

  17. Li, X., Hu, W., Zhang, Z., Wang, H.: Heat kernel based local binary pattern for face representation and classification. IEEE Signal Process. Lett. 17(3), 308–311 (2010)

    Article  Google Scholar 

  18. Chianese, A., Marulli, F., Moscato, V., Piccialli, F.: A smart multimedia guide for indoor contextual navigation in cultural heritage applications. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–6 (2013)

  19. Farina, R., Cuomo, S., De Michele, P., Piccialli, F.: A smart GPU implementation of an elliptic kernel for an ocean global circulation model. Appl. Math. Sci. 7(61), 3007–3021 (2013)

    Google Scholar 

  20. Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction based on hessian penalty term on CPU/GPU systems. Proc. Comput. Sci. 18, 2643–2646 (2013)

    Article  Google Scholar 

  21. Ma, T., Zhang, Y., Cao, J., Shen, J., Tang, M., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M.: KDVEM: a k-degree anonymity with vertex and edge modification algorithm. Computing 70(6), 1336–1344 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Chen, Y., Hao, C., Wen, W., Enhua, W.: Robust dense reconstruction by range merging based on confidence estimation. Sci. China Inf. Sci. 59(9), 1–11 (2016)

    Google Scholar 

  23. Bai, X., Hancock, E.R.: Heat kernels, manifolds and graph embedding. In: Structural, Syntactic, and Statistical Pattern Recognition. pp. 198–206 (2004)

    Google Scholar 

  24. Xiao, B., Wilson, R.C., Hancock, E.R.: Characterising graphs using the heat kernel. In: Proceedings of the conference on British Machine Vision Conference. pp. 50–64 (2005)

  25. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression forface recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  26. Farina, R., Cuomo, S., De Michele, P., Piccialli, F.: Heat kernel based local binary pattern for face representation and classification. Appl. Math. Sci. 7(61), 3007–3021 (2013)

    Google Scholar 

  27. Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction based on hessian penalty term on CPU/GPU systems. Proc. Comput. Sci. 18, 2643–2646 (2013)

    Article  Google Scholar 

  28. Cuomo, S., De Michele, P., Piccialli, F.: 3D data denoising via nonlocal means filter by using parallel GPU strategies. Comput. Math. Methods Med. (2014). https://doi.org/10.1155/2014/523862

    Article  MATH  Google Scholar 

  29. Palma, G., Comerci, M., Alfano, B., Cuomo, S., De Michele, P., Piccialli, F., Borrelli, P.: 3D Non-local means denoising via multi-GPU. In: 2013 Federated Conference on Computer Science and Information Systems. pp. 495–498 (2013)

  30. Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)

    Article  Google Scholar 

  31. Liu, Y., Zhan, Z., Cai, J.-F., Guo, D., Chen, Z., Xiaobo, Q.: Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans. Med. Imaging 35(9), 2130–2140 (2016)

    Article  Google Scholar 

  32. Zhan, Z., Cai, J.-F., Guo, D., Liu, Y., Chen, Z., Xiaobo, Q.: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans. Biomed. Eng. 63(9), 1850–1861 (2016)

    Article  Google Scholar 

  33. Cuomo, S., Michele, P.D., Piccialli, F., Galletti, A., Jung, J.E.: IoT-based collaborative reputation system for associating visitors and artworks in a cultural scenario. Expert Syst. Appl. 79, 101–111 (2017)

    Article  Google Scholar 

  34. Chianese, A., Picciall, F.: SmaCH: a framework for smart cultural heritage spaces. In: 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014, pp. 477–484 (2015)

  35. Gu, B., Sheng, V.S.: A robust regularization path algorithm for \(\nu \)-support vector classification. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2016.2527796

    Article  Google Scholar 

  36. Wang, J., Lian, S., Shi, Y.-Q.: Hybrid multiplicative multi-watermarking in DWT domain. Multidimens. Syst. Signal Process. 28(2), 617–636 (2017)

    Article  Google Scholar 

  37. Tian, Q., Chen, S.: Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238, 286–295 (2017)

    Article  Google Scholar 

  38. Zhou, Z., Wang, Y., Wu, Q.M.J., Yang, C.-N., Sun, X.: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 12(1), 48–63 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (#61701327, #61711540303), National Research Foundation of Korea (#NRF-2017K2A9A2A06013711), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) Fund, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Yang, X., Gou, X. et al. Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation. Int J Parallel Prog 46, 943–962 (2018). https://doi.org/10.1007/s10766-017-0552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-017-0552-8

Keywords

Navigation