iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10710-014-9219-Z
GA-based approach to find the stabilizers of a given sub-space | Genetic Programming and Evolvable Machines Skip to main content

Advertisement

Log in

GA-based approach to find the stabilizers of a given sub-space

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Stabilizer formalism is a powerful framework for understanding a wide class of operations in quantum information. This formalism is a framework where multiple qubit states and sub-spaces are described in a compact way in terms of operators under which they are invariant. In stabilizer formalism, one focuses the members of Pauli groups which have the stabilizing property of a given sub-space. Therefore, finding the Pauli stabilizers of a given sub-space in an efficient way is of great interest. In this paper, this problem is addressed in the field of quantum information theory. We present a two-phase algorithm to solve the problem whose order of complexity is considerably smaller than the common solution. In the first phase, a genetic algorithm is run. The results obtained by this algorithm are the matrices that can potentially be the Pauli stabilizers of the given sub-space. Then an analytical approach is applied to find the correct answers among the results of the first phase. Experimental results show that speed-ups are remarkable as compared to the common solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary ed. (Cambridge University Press, Cambridge, 2010)

  2. M. Nakahara, T. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations, 1st edn. (Taylor & Francis, London, 2008)

    Book  Google Scholar 

  3. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J.Sci. Stat. Comput. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. L.K. Grover, in A fast quantum mechanical algorithm for database search, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), 1996, pp. 212–219

  5. D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhDThesis, Caltech, 1997

  6. M. Hein, J. Eisert, H.J. Briegel, Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  MathSciNet  Google Scholar 

  7. D. Schlingemann, R.F. Werner, Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  Google Scholar 

  8. R. Raussendorf, D.E. Browne, H.J. Briegel, The one-way quantum computer—a non-network model of quantum computation. J. Mod. Opt. 49, 1299 (2001)

    Article  MathSciNet  Google Scholar 

  9. G. Toth, O. Guehne, Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005)

    Article  Google Scholar 

  10. D. Fattal, T.S. Cubitto, Y. Yamamoto, S. Bravyi, I. L. Chuang, Entanglement in the Stabilizer Formalism. arxiv.org/abs/quant-ph/0406168, 2004

  11. S. Glancy, E. Knill, Entanglement purification of any stabilizer state. Phys. Rev. A 77, 032324 (2006)

    MathSciNet  Google Scholar 

  12. D. Browne, H. Briegel, One-Way Quantum Computation. arxiv.org/abs/quant-ph/0108118, 2006

  13. P. Walther, M. Aspelmeyer, K.J. Resch, A. Zeilinger, Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005)

    Article  Google Scholar 

  14. D. Gottesman, A theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  Google Scholar 

  15. M. Hillery, V. Bužek, A. Berthiaume, Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  Google Scholar 

  16. M. Mitchell, An Introduction to Genetic Algorithms (The MIT Press, Cambridge, 1998)

    MATH  Google Scholar 

  17. D. Bruss, G. Leuchs, Lectures on Quantum Information (WILEY-VCH Verlag GmbH & Co. KGaA, Weinbeim, 2007)

    MATH  Google Scholar 

  18. C.C. Sims, in Computational Group Theory. Computer algebra handbook, foundations, applications, systems (Springer, Berlin, 2003), pp. 65–83

  19. A. Hulpke, Notes on Computational Group Theory, course notes, Colorado State University, 2010

  20. A.Y. Kitaev, Quantum Measurements and Abelian Stabilizer Problem. arxiv.org/abs/quant-ph/9511026, 1995

  21. G.H. Golub, C.F.V. Van Loan, Matrix computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  22. J.H. Holland, Adaptations in Natural and Artificial Systems (MIT Press, Cambridge, 1975)

    Google Scholar 

  23. C.P. Williams, A. Gray, Automated design of quantum circuits, in Quantum Computing and Quantum Communications (QCQC ‘98), (Springer, Heidelberg, 1999), pp. 113–125

  24. M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C.H. Yu, K. Chung, H. Jee, B. Kim, Y. Kim, Evolutionary approach to quantum and reversible circuit synthesis. Artif. Intell. Rev. 20, 361–417 (2004)

    Article  Google Scholar 

  25. C. Ruican, M. Uderscu, L. Prodan, M. Vladutiu, Automatic synthesis for quantum circuits using genetic algorithms, in ICANNGA’07 International Conference on Adaptive and Natural Computing Algorithms, LNCS 4431 (Springer, Heidelberg, 2007), pp. 174–183

  26. R. Rezayee-Saleh, M. Houshmand, M. Houshmand, Multi-objective optimization of QCA circuits with multiple outputs using genetic programming. Int. J. Genet. Program. Evol. Mach. 14, 95–118 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Saheb Zamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houshmand, M., Saheb Zamani, M., Sedighi, M. et al. GA-based approach to find the stabilizers of a given sub-space. Genet Program Evolvable Mach 16, 57–71 (2015). https://doi.org/10.1007/s10710-014-9219-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-014-9219-z

Keywords

Navigation