iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10618-017-0526-X
Fast and accurate mining of correlated heavy hitters | Data Mining and Knowledge Discovery Skip to main content
Log in

Fast and accurate mining of correlated heavy hitters

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

The problem of mining correlated heavy hitters (CHH) from a two-dimensional data stream has been introduced recently, and a deterministic algorithm based on the use of the Misra–Gries algorithm has been proposed by Lahiri et al. to solve it. In this paper we present a new counter-based algorithm for tracking CHHs, formally prove its error bounds and correctness and show, through extensive experimental results, that our algorithm outperforms the Misra–Gries based algorithm with regard to accuracy and speed whilst requiring asymptotically much less space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://ita.ee.lbl.gov/html/contrib/WorldCup.html

References

  • Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. ACM SIGMOD Rec 22(2):207–216

    Article  Google Scholar 

  • Ananthakrishna R, Das A, Gehrke J, Korn F, Muthukrishnan S, Srivastava D (2003) Efficient approximation of correlated sums on data streams. IEEE Trans Knowl Data Eng 15(3):569–572

    Article  Google Scholar 

  • Cafaro M, Pulimeno M (2016) Merging frequent summaries. In: Proceedings of the 17th Italian conference on theoretical computer science (ICTCS 2016), vol 1720, CEUR proceedings, pp 280–285

  • Cafaro M, Tempesta P (2011) Finding frequent items in parallel. Concurr Comput Pract Exp 23(15):1774–1788. doi:10.1002/cpe.1761

    Article  Google Scholar 

  • Cafaro M, Pulimeno M, Epicoco I, Aloisio G (2016a) Mining frequent items in the time fading model. Inf Sci 370–371:221–238. doi:10.1016/j.ins.2016.07.077

  • Cafaro M, Pulimeno M, Tempesta P (2016b) A parallel space saving algorithm for frequent items and the hurwitz zeta distribution. Inf Sci 329:1–19. doi:10.1016/j.ins.2015.09.003, http://www.sciencedirect.com/science/article/pii/S002002551500657X

  • Cafaro M, Pulimeno M, Epicoco I, Aloisio G (2017) Parallel space saving on multi- and many-core processors. Concurr Comput Pract Exp. doi:10.1002/cpe.4160

  • Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items in data streams. In: ICALP ’02: proceedings of the 29th international colloquium on automata. Languages and programming. Springer-Verlag, pp 693–703

  • Chen L, Mei Q (2014) Mining frequent items in data stream using time fading model. Inf Sci 257:54–69. doi:10.1016/j.ins.2013.09.007, http://www.sciencedirect.com/science/article/pii/S0020025513006403

  • Cheng J, Ke Y, Ng W (2008) A survey on algorithms for mining frequent itemsets over data streams. Knowl Inf Syst 16(1):1–27. doi:10.1007/s10115-007-0092-4

    Article  Google Scholar 

  • Cormode G, Hadjieleftheriou M (2009) Finding the frequent items in streams of data. Commun ACM 52(10):97–105. doi:10.1145/1562764.1562789

    Article  Google Scholar 

  • Cormode G, Muthukrishnan S (2005a) An improved data stream summary: the count-min sketch and its applications. J Algorithms 55(1):58–75. doi:10.1016/j.jalgor.2003.12.001

    Article  MathSciNet  MATH  Google Scholar 

  • Cormode G, Muthukrishnan S (2005b) What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans Database Syst 30(1):249–278. doi:10.1145/1061318.1061325

    Article  Google Scholar 

  • Cormode G, Korn F, Tirthapura S (2008) Exponentially decayed aggregates on data streams. In: IEEE 24th international conference on data engineering, 2008, ICDE 2008, pp 1379–1381, doi:10.1109/ICDE.2008.4497562

  • Cormode G, Tirthapura S, Xu B (2009) Time-decayed correlated aggregates over data streams. Stat Anal Data Min 2(5–6):294–310

    Article  MathSciNet  Google Scholar 

  • Das S, Antony S, Agrawal D, El Abbadi A (2009) Thread cooperation in multicore architectures for frequency counting over multiple data streams. Proc VLDB Endow 2(1):217–228. doi:10.14778/1687627.1687653

    Article  Google Scholar 

  • Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows: (extended abstract). In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’02. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 635–644

  • Demaine ED, López-Ortiz A, Munro JI (2002) Frequency estimation of internet packet streams with limited space. In: ESA, pp 348–360

  • Erra U, Frola B (2012) Frequent items mining acceleration exploiting fast parallel sorting on the gpu. Proc Comput Sci 9(0):86–95, doi:10.1016/j.procs.2012.04.010, http://www.sciencedirect.com/science/article/pii/S1877050912001317, proceedings of the international conference on computational science, ICCS 2012

  • Gehrke J, Korn F, Srivastava D (2001) On computing correlated aggregates over continual data streams. SIGMOD Rec 30(2):13–24. doi:10.1145/376284.375665

    Article  Google Scholar 

  • Govindaraju NK, Raghuvanshi N, Manocha D (2005) Fast and approximate stream mining of quantiles and frequencies using graphics processors. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, SIGMOD ’05, ACM, pp 611–622, doi:10.1145/1066157.1066227

  • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM SIGMOD Rec 29(2):1–12

    Article  Google Scholar 

  • Jin C, Qian W, Sha C, Yu JX, Zhou A (2003) Dynamically maintaining frequent items over a data stream. In: Proceedings of CIKM, ACM Press, pp 287–294

  • Karp RM, Shenker S, Papadimitriou CH (2003) A simple algorithm for finding frequent elements in streams and bags. ACM Trans Database Syst 28(1):51–55. doi:10.1145/762471.762473

    Article  Google Scholar 

  • Lahiri B, Mukherjee AP, Tirthapura S (2016) Identifying correlated heavy-hitters in a two-dimensional data stream. Data Min Knowl Discov 30(4):797–818. doi:10.1007/s10618-015-0438-6

    Article  MathSciNet  Google Scholar 

  • Manerikar N, Palpanas T (2009) Frequent items in streaming data: an experimental evaluation of the state-of-the-art. Data Knowl Eng 68(4):415–430. doi:10.1016/j.datak.2008.11.001

    Article  Google Scholar 

  • Manjhi A, Shkapenyuk V, Dhamdhere K, Olston C (2005) Finding (recently) frequent items in distributed data streams. In: Proceedings of 21st international conference on data engineering, 2005, ICDE 2005, pp 767–778, doi:10.1109/ICDE.2005.68

  • Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: VLDB, pp 346–357

  • Metwally A, Agrawal D, Abbadi AE (2006) An integrated efficient solution for computing frequent and top-k elements in data streams. ACM Trans Database Syst 31(3):1095–1133. doi:10.1145/1166074.1166084

    Article  Google Scholar 

  • Mirylenka K, Cormode G, Palpanas T, Srivastava D (2015) Conditional heavy hitters: detecting interesting correlations in data streams. VLDB J 24(3):395–414. doi:10.1007/s00778-015-0382-5

    Article  Google Scholar 

  • Misra J, Gries D (1982) Finding repeated elements. Sci Comput Progr 2(2):143–152

    Article  MathSciNet  MATH  Google Scholar 

  • Roy P, Teubner J, Alonso G (2012) Efficient frequent item counting in multi-core hardware. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, ACM, pp 1451–1459, doi:10.1145/2339530.2339757

  • Tangwongsan K, Tirthapura S, Wu KL (2014) Parallel streaming frequency-based aggregates. In: Proceedings of the 26th ACM symposium on parallelism in algorithms and architectures, SPAA ’14, ACM, pp 236–245, doi:10.1145/2612669.2612695

  • Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390

    Article  Google Scholar 

  • Zhang Y (2012) Parallelizing the weighted lossy counting algorithm in high-speed network monitoring. In: Second international conference on instrumentation, measurement, computer, communication and control (IMCCC), pp 757–761, doi:10.1109/IMCCC.2012.183

  • Zhang Y, Singh S, Sen S, Duffield N, Lund C (2004) Online identification of hierarchical heavy hitters: algorithms, evaluation, and applications. In: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, ACM, pp 101–114

  • Zhang Y, Sun Y, Zhang J, Xu J, Wu Y (2014) An efficient framework for parallel and continuous frequent item monitoring. Concurr Comput Pract Exp 26(18):2856–2879. doi:10.1002/cpe.3182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Cafaro.

Additional information

Responsible editor: Toon Calders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epicoco, I., Cafaro, M. & Pulimeno, M. Fast and accurate mining of correlated heavy hitters. Data Min Knowl Disc 32, 162–186 (2018). https://doi.org/10.1007/s10618-017-0526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-017-0526-x

Keywords

Navigation