iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10586-024-04429-Z
Advancing quantum steganography: a secure IoT communication with reversible decoding and customized encryption technique for smart cities | Cluster Computing Skip to main content

Advertisement

Log in

Advancing quantum steganography: a secure IoT communication with reversible decoding and customized encryption technique for smart cities

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Smart cities, fueled by the Internet of Things (IoT), promise urban efficiency and convenience. However, it has also exposed vulnerabilities in the security and privacy of sensitive data transmitted and stored within these interconnected networks. The increasing frequency of cyberattacks and data breaches underscores the pressing need for innovative solutions to enhance the security of smart city IoT systems. This paper introduces a novel approach to bolstering IoT security in smart cities by adapting quantum cryptography principles. Leveraging quantum steganography, we conceal sensitive data within quantum streams. The proposed model provides a comprehensive solution that ensures the confidentiality, integrity, and authenticity of data within smart city IoT ecosystems. By combining quantum steganography, reversible decoding, customized encryption, privacy amplification, and cryptographic verification, this protocol fosters trust among stakeholders and supports the secure evolution of urban environments. This research offers a blueprint for securing IoT in smart cities, fostering trust, and enabling the safe evolution of urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 5
Algorithm 5
Algorithm 6
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The dataset is available and provided on demand.

References

  1. Pandya, S., Srivastava, G., Jhaveri, R., Babu, M.R., Bhattacharya, S., Maddikunta, P.K.R., Mastorakis, S., Piran, M.J., Gadekallu, T.R.: Federated learning for smart cities: a comprehensive survey. Sustainable Energy Technol. Assess. 55, 102987 (2023)

    Google Scholar 

  2. Cui, L., Xie, G., Qu, Y., Gao, L., Yang, Y.: Security and privacy in smart cities: challenges and opportunities. IEEE Access 6, 46134–46145 (2018)

    Google Scholar 

  3. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017)

    Google Scholar 

  4. Buchovecká, S., Lórencz, R., Buček, J., Kodỳtek, F.: Symmetric and asymmetric schemes for lightweight secure communication. In: International Conference on Information Systems Security and Privacy, pp. 97–114 (2020). Springer

  5. Ragab, A., Selim, G., Wahdan, A., Madani, A.: Robust hybrid lightweight cryptosystem for protecting iot smart devices. In: Security, Privacy, and Anonymity in Computation, Communication, and Storage: SpaCCS 2019 International Workshops, Atlanta, GA, USA, July 14–17, 2019, Proceedings 12, pp. 5–19 (2019). Springer

  6. Challa, S., Wazid, M., Das, A.K., Kumar, N., Reddy, A.G., Yoon, E.-J., Yoo, K.-Y.: Secure signature-based authenticated key establishment scheme for future IoT applications. Ieee Access 5, 3028–3043 (2017)

    Google Scholar 

  7. Höglund, J., Lindemer, S., Furuhed, M., Raza, S.: Pki4iot: towards public key infrastructure for the internet of things. Comput. Secur. 89, 101658 (2020)

    Google Scholar 

  8. Chae, C.-J., Kim, K.-B., Cho, H.-J.: A study on secure user authentication and authorization in Oauth protocol. Clust. Comput. 22, 1991–1999 (2019)

    Google Scholar 

  9. Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer networks. IEEE Commun. Mag. 32(9), 33–38 (1994)

    Google Scholar 

  10. Amorim, I., Costa, I.: Leveraging searchable encryption through homomorphic encryption: a comprehensive analysis. Mathematics 11(13), 2948 (2023)

    Google Scholar 

  11. Velliangiri, S., Manoharn, R., Ramachandran, S., Venkatesan, K., Rajasekar, V., Karthikeyan, P., Kumar, P., Kumar, A., Dhanabalan, S.S.: An efficient lightweight privacy-preserving mechanism for industry 4.0 based on elliptic curve cryptography. IEEE Transactions on Industrial Informatics 18(9), 6494–6502 (2022) https://doi.org/10.1109/TII.2021.3139609

  12. Li, X., Dowsley, R., De Cock, M.: Privacy-preserving feature selection with secure multiparty computation. In: International Conference on Machine Learning, pp. 6326–6336 (2021). PMLR

  13. Almazrooie, M., Samsudin, A., Gutub, A.A.-A., Salleh, M.S., Omar, M.A., Hassan, S.A.: Integrity verification for digital holy Quran verses using cryptographic hash function and compression. J. King Saud Univ.-Comput. Inf. Sci. 32(1), 24–34 (2020)

    Google Scholar 

  14. Cagalj, M., Capkun, S., Rengaswamy, R., Tsigkogiannis, I., Srivastava, M., Hubaux, J.-P.: Integrity (i) codes: Message integrity protection and authentication over insecure channels. In: 2006 IEEE Symposium on Security and Privacy (S &P’06), p. 15 (2006). IEEE

  15. Camtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor networks: a survey. Rensselaer Polytechnic Institute, Troy, New York, Technical Report, 05–07 (2005)

  16. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Google Scholar 

  17. Seyhan, K., Nguyen, T.N., Akleylek, S., Cengiz, K.: Lattice-based cryptosystems for the security of resource-constrained IoT devices in post-quantum world: a survey. Clust. Comput. 25(3), 1729–1748 (2022)

    Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

  19. Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. 102(5), 050502 (2009)

    MathSciNet  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today 54(2), 60 (2001)

    Google Scholar 

  21. Soni, L., Chandra, H., Gupta, D.S., Keval, R.: Quantum-resistant public-key encryption and signature schemes with smaller key sizes. Cluster Comput. 27, 285–297 (2022)

    Google Scholar 

  22. Sookhak, M., Tang, H., He, Y., Yu, F.R.: Security and privacy of smart cities: a survey, research issues and challenges. IEEE Commun. Surv. Tutor. 21(2), 1718–1743 (2018)

    Google Scholar 

  23. Rathore, A.K., Ilavarasan, P.V., Dwivedi, Y.K.: Social media content and product co-creation: an emerging paradigm. J. Enterp. Inf. Manag. 29(1), 7–18 (2016)

    Google Scholar 

  24. Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios, G., Demestichas, P., Somov, A., Biswas, A.R., Moessner, K.: Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun. Mag. 51(6), 102–111 (2013)

    Google Scholar 

  25. Dai, H.-N., Zheng, Z., Zhang, Y.: Blockchain for internet of things: a survey. IEEE Internet Things J. 6(5), 8076–8094 (2019)

    Google Scholar 

  26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    MathSciNet  Google Scholar 

  27. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Google Scholar 

  28. Chen, J., Gan, W., Hu, M., Chen, C.-M.: On the construction of a post-quantum blockchain. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8 (2021). IEEE

  29. Ye, F., Zhou, Z., Li, Y.: Quantum-assisted blockchain for IoT based on quantum signature. Quantum Inf. Process. 21(9), 327 (2022)

    MathSciNet  Google Scholar 

  30. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    Google Scholar 

  31. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Google Scholar 

  32. Bhardwaj, K.K., Khanna, A., Sharma, D.K., Chhabra, A.: Designing energy-efficient iot-based intelligent transport system: need, architecture, characteristics, challenges, and applications. Energy Conservation for IoT Devices: Concepts, Paradigms and Solutions, 209–233 (2019)

  33. Miloslavskaya, N., Tolstoy, A.: Internet of things: information security challenges and solutions. Clust. Comput. 22, 103–119 (2019)

    Google Scholar 

  34. Bertino, E.: Data security and privacy in the iot. In: EDBT, vol. 2016, pp. 1–3 (2016)

  35. Ali, I., Sabir, S., Ullah, Z.: Internet of things security, device authentication and access control: a review. arXiv preprint arXiv:1901.07309 (2019)

  36. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutor. 21(3), 2702–2733 (2019). https://doi.org/10.1109/COMST.2019.2910750

    Article  Google Scholar 

  37. Ndibanje, B., Lee, H.-J., Lee, S.-G.: Security analysis and improvements of authentication and access control in the internet of things. Sensors 14(8), 14786–14805 (2014)

    Google Scholar 

  38. Junior, F.M.R., Kamienski, C.A.: A survey on trustworthiness for the internet of things. IEEE Access 9, 42493–42514 (2021). https://doi.org/10.1109/ACCESS.2021.3066457

    Article  Google Scholar 

  39. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis, E.K.: A survey on the internet of things (IoT) forensics: challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 22(2), 1191–1221 (2020)

    Google Scholar 

  40. Torre, D., Chennamaneni, A., Rodriguez, A.: Privacy-preservation techniques for IoT devices: a systematic mapping study. IEEE Access 11, 16323–16345 (2023). https://doi.org/10.1109/ACCESS.2023.3245524

    Article  Google Scholar 

  41. Xia, L., Semirumi, D., Rezaei, R.: A thorough examination of smart city applications: exploring challenges and solutions throughout the life cycle with emphasis on safeguarding citizen privacy. Sustain. Cities Soc. 98, 104771 (2023)

    Google Scholar 

  42. Bugeja, J., Vogel, B., Jacobsson, A., Varshney, R.: Iotsm: an end-to-end security model for iot ecosystems. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 267–272 (2019). IEEE

  43. Singh, S., Sharma, P.K., Yoon, B., Shojafar, M., Cho, G.H., Ra, I.-H.: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 63, 102364 (2020)

    Google Scholar 

  44. Ahad, M.A., Tripathi, G., Zafar, S., Doja, F.: Iot data management-security aspects of information linkage in iot systems. Principles of internet of things (IoT) ecosystem: Insight paradigm, 439–464 (2020)

  45. Geihs, M., Nikiforov, O., Demirel, D., Sauer, A., Butin, D., Günther, F., Alber, G., Walther, T., Buchmann, J.: The status of quantum-key-distribution-based long-term secure internet communication. IEEE Trans. Sustain. Comput. 6(1), 19–29 (2019)

    Google Scholar 

  46. Sharma, A., Goyal, T., Pilli, E.S., Mazumdar, A.P., Govil, M.C., Joshi, R.C.: A secure hybrid cloud enabled architecture for internet of things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 274–279 (2015). https://doi.org/10.1109/WF-IoT.2015.7389065

  47. Wu, H.-L., Chang, C.-C., Zheng, Y.-Z., Chen, L.-S., Chen, C.-C.: A secure IoT-based authentication system in cloud computing environment. Sensors 20(19), 5604 (2020)

    Google Scholar 

  48. Sarker, I.H., Abushark, Y.B., Alsolami, F., Khan, A.I.: Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry 12(5), 754 (2020)

    Google Scholar 

  49. Unal, D., Al-Ali, A., Catak, F.O., Hammoudeh, M.: A secure and efficient internet of things cloud encryption scheme with forensics investigation compatibility based on identity-based encryption. Futur. Gener. Comput. Syst. 125, 433–445 (2021)

    Google Scholar 

  50. Irshad, A., Chaudhry, S.A.: Comment on ‘elgamal cryptosystem-based secure authentication system for cloud-based IoT applications’. IET Networks 10(5), 244–245 (2021)

    Google Scholar 

  51. Ahmad, S., Mehfuz, S., Beg, J.: Hybrid cryptographic approach to enhance the mode of key management system in cloud environment. J. Supercomput. 79(7), 7377–7413 (2023)

    Google Scholar 

  52. Uppuluri, S., Lakshmeeswari, G.: Secure user authentication and key agreement scheme for IoT device access control based smart home communications. Wireless Netw. 29(3), 1333–1354 (2023)

    Google Scholar 

  53. Bommu, S., Babburu, K., Thalluri, L.N., Gopalan, A., Mallapati, P.K., Guha, K., Mohammad, H.R.: Smart city IoT system network level routing analysis and blockchain security based implementation. J. Elect. Eng. Technol. 18(2), 1351–1368 (2023)

    Google Scholar 

  54. Sharma, P., Namasudra, S., Crespo, R.G., Parra-Fuente, J., Trivedi, M.C.: Ehdhe: enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain. Inf. Sci. 629, 703–718 (2023)

    Google Scholar 

  55. Selvarajan, S., Srivastava, G., Khadidos, A.O., Khadidos, A.O., Baza, M., Alshehri, A., Lin, J.C.-W.: An artificial intelligence lightweight blockchain security model for security and privacy in IoT systems. J. Cloud Comput. 12(1), 38 (2023)

    Google Scholar 

  56. Jalasri, M., Lakshmanan, L.: Managing data security in fog computing in IoT devices using noise framework encryption with power probabilistic clustering algorithm. Clust. Comput. 26(1), 823–836 (2023)

    Google Scholar 

  57. Bhatia, M., Sood, S.K.: Quantum computing-inspired network optimization for IoT applications. IEEE Internet Things J. 7(6), 5590–5598 (2020)

    Google Scholar 

  58. Rizi, M.H.P., Seno, S.A.H.: A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet Things 20, 100584 (2022)

    Google Scholar 

  59. Gao, W., Yu, W., Liang, F., Hatcher, W.G., Lu, C.: Privacy-preserving auction for big data trading using homomorphic encryption. IEEE Trans. Netw. Sci. Eng. 7(2), 776–791 (2018)

    Google Scholar 

  60. Althobaiti, O.S., Dohler, M.: Quantum-resistant cryptography for the internet of things based on location-based lattices. IEEE Access 9, 133185–133203 (2021). https://doi.org/10.1109/ACCESS.2021.3115087

    Article  Google Scholar 

  61. Mohanty, T., Srivastava, V., Debnath, S.K., Das, A.K., Sikdar, B.: Quantum secure threshold private set intersection protocol for IoT-enabled privacy-preserving ride-sharing application. IEEE Internet Things J. 11(1), 1761–1772 (2024). https://doi.org/10.1109/JIOT.2023.3291132

    Article  Google Scholar 

  62. Li, Z., Xue, K., Li, J., Chen, L., Li, R., Wang, Z., Yu, N., Wei, D.S.L., Sun, Q., Lu, J.: Entanglement-assisted quantum networks: mechanics, enabling technologies, challenges, and research directions. IEEE Commun. Surv. Tutor. 25(4), 2133–2189 (2023). https://doi.org/10.1109/COMST.2023.3294240

    Article  Google Scholar 

  63. De Leon, N.P., Itoh, K.M., Kim, D., Mehta, K.K., Northup, T.E., Paik, H., Palmer, B., Samarth, N., Sangtawesin, S., Steuerman, D.W.: Materials challenges and opportunities for quantum computing hardware. Science 372(6539), 2823 (2021)

    Google Scholar 

  64. Harun, N.Z., Zukarnain, Z.A., Hanapi, Z.M., Ahmad, I.: Hybrid m-ary in braided single stage approach for multiphoton quantum secure direct communication protocol. IEEE Access 7, 22599–22612 (2019). https://doi.org/10.1109/ACCESS.2019.2898426

    Article  Google Scholar 

Download references

Funding

No Funding is available.

Author information

Authors and Affiliations

Authors

Contributions

Sujit Biswas: Modelling, implementing. Rajat.S. Goswami: writing and designing. K. H. K. Reddy: designing and implementing. Proofreading.

Corresponding author

Correspondence to Rajat Subhra Goswami.

Ethics declarations

Conflict of interest

Not applicable. There is no Conflict of interest with any financial or personal nature.

Ethical approval

Not applicable for both human and/or animal studies.

Informed consent

The work is original and unpublished and has not been submitted for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 629 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Goswami, R.S. & Reddy, K.H.K. Advancing quantum steganography: a secure IoT communication with reversible decoding and customized encryption technique for smart cities. Cluster Comput 27, 9395–9414 (2024). https://doi.org/10.1007/s10586-024-04429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04429-z

Keywords

Navigation