iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10514-022-10078-1
SMORES-EP, a modular robot with parallel self-assembly | Autonomous Robots Skip to main content
Log in

SMORES-EP, a modular robot with parallel self-assembly

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Self-assembly of modular robotic systems enables the construction of complex robotic configurations to adapt to different tasks. This paper presents a framework for SMORES types of modular robots to efficiently self-assemble into tree topologies. These modular robots form kinematic chains that have been shown to be capable of a large variety of manipulation and locomotion tasks, yet they can reconfigure using a mobile reconfiguration. A desired kinematic topology can be mapped onto a planar pattern with the optimal module assignment based on the modules’ locations, then the mobile reconfiguration assembly process can be executed in parallel. A docking controller is developed to guarantee the success of docking processes. A hybrid control architecture is designed to handle a large number of modules and complex behaviors of each individual, and achieve efficient and robust self-assembly actions. The framework is demonstrated in both hardware and simulation on the SMORES-EP platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bererton, C., & Khosla, P. K. (2001). Towards a team of robots with repair capabilities: A visual docking system. In D. Rus & S. Singh (Eds.), Experimental Robotics VII (pp. 333–342). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Binder, B., Beck, F., König, F., & Bader, M. (2019). Multi robot route planning (MRRP): Extended spatial-temporal prioritized planning. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4133–4139). https://doi.org/10.1109/IROS40897.2019.8968465

  • Brandt, D. (2006). Comparison of A* and RRT-Connect motion planning techniques for self-reconfiguration planning. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 892–897). https://doi.org/10.1109/IROS.2006.281743.

  • Brown, H. B., Vande Weghe, J. M., Bererton, C. A., & Khosla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461. https://doi.org/10.1109/TMECH.2002.806226.

    Article  Google Scholar 

  • Chirikjian, G. S. (1994). Kinematics of a metamorphic robotic system. In Proceedings of the 1994 IEEE international conference on robotics and automation (pp. 449–455) vol. 1. https://doi.org/10.1109/ROBOT.1994.351256

  • Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., & Campbell, M. (2018). An integrated system for perception-driven autonomy with modular robots. Science Robotics. https://doi.org/10.1126/scirobotics.aat4983.

    Article  Google Scholar 

  • Davey, J., Kwok, N., & Yim, M. (2012). Emulating self-reconfigurable robots-design of the SMORES system. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 4464–4469). https://doi.org/10.1109/IROS.2012.6385845

  • Dutta, A., Dasgupta, P., & Nelson, C. (2019). Distributed configuration formation with modular robots using (sub)graph isomorphism-based approach. Autonomous Robots, 43(4), 837–857. https://doi.org/10.1007/s10514-018-9759-9.

    Article  Google Scholar 

  • Eckenstein, N., & Yim, M. (2012). The X-Face: An improved planar passive mechanical connector for modular self-reconfigurable robots. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 3073–3078). https://doi.org/10.1109/IROS.2012.6386150

  • Eckenstein, N., & Yim, M. (2017). Modular robot connector area of acceptance from configuration space obstacles. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3550–3555). https://doi.org/10.1109/IROS.2017.8206199

  • Fox, M. J., & Shamma, J. S. (2015). Probabilistic performance guarantees for distributed self-assembly. IEEE Transactions on Automatic Control, 60(12), 3180–3194. https://doi.org/10.1109/TAC.2015.2418673.

    Article  MATH  Google Scholar 

  • Fukuda, T., Buss, M., Hosokai, H., & Kawauchi, Y. (1991). Cell structured robotic system CEBOT: Control, planning and communication methods. Robotics and Autonomous Systems,7(2), 239–248.

  • Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in a Swarm-bot. In Murase, K., Sekiyama, K., Naniwa, T., Kubota, N., & Sitte, J. (eds.), Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005) (pp. 314–322). Springer: Berlin.

  • Haghighat, B., Droz, E., & Martinoli, A. (2015). Lily: A miniature floating robotic platform for programmable stochastic self-assembly. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 1941–1948). https://doi.org/10.1109/ICRA.2015.7139452

  • Haghighat, B., & Martinoli, A. (2017). Automatic synthesis of rulesets for programmable stochastic self-assembly of rotationally symmetric robotic modules. Swarm Intelligence, 11, 243–270. https://doi.org/10.1007/s11721-017-0139-4.

    Article  Google Scholar 

  • Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics and Autonomous Systems, 17(1), 107–118. https://doi.org/10.1016/0921-8890(95)00066-6.

  • Kamimura, A., Kurokawa, H., Toshida, E., Tomita, K., Murata, S., & Kokaji, S. (2003). Automatic locomotion pattern generation for modular robots. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), vol 1 (pp. 714–720). https://doi.org/10.1109/ROBOT.2003.1241678.

  • Klavins, E. (2002). Automatic synthesis of controllers for distributed assembly and formation forming. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No.02CH37292), vol 3 (pp. 3296–3302). https://doi.org/10.1109/ROBOT.2002.1013735

  • Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962. https://doi.org/10.1109/TAC.2006.876950.

    Article  MATH  Google Scholar 

  • Knaian, A. N. (2010). Electropermanent magnetic connectors and actuators: Devices and their application in programmable matter. Ph.D. thesis, Massachusetts Institute of Technology, Boston.

  • Li, H., Wang, T., & Chirikjian, G. S. (2016). Self-assembly planning of a shape by regular modular robots. In X. Ding, X. Kong, & J. S. Dai (Eds.), Advances in Reconfigurable Mechanisms and Robots II (pp. 867–877). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Liu, C., Tosun, T., & Yim, M. (2021). A low-cost, highly customizable solution for position estimation in modular robots. Journal of Mechanisms and Robotics.,https://doi.org/10.1115/1.4050249.

  • Liu, C., Whitzer, M., & Yim, M. (2019). A distributed reconfiguration planning algorithm for modular robots. IEEE Robotics and Automation Letters, 4(4), 4231–4238. https://doi.org/10.1109/LRA.2019.2930432.

    Article  Google Scholar 

  • Liu, W., & Winfield, A. F. T. (2014). Self-assembly in heterogeneous modular robots. In M. Ani Hsieh & G. Chirikjian (Eds.), Distributed autonomous robotic systems (pp. 219–232). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Liu, C., & Yim, M. (2017). Configuration recognition with distributed information for modular robots. In IFRR international symposium on robotics research (ISRR), Puerto Varas, Chile. https://doi.org/10.1007/978-3-030-28619-4_65

  • Liu, C., & Yim, M. (2020). A quadratic programming approach to modular robot control and motion planning. In 2020 Forth IEEE international conference on robotic computing (IRC), Taichung, Taiwan.

  • McColm, G. L. (2004). On the structure of random unlabelled acyclic graphs. Discrete Mathematics, 277(1), 147–170.

    Article  MATH  Google Scholar 

  • Mermoud, G., Mastrangeli, M., Upadhyay, U., & Martinoli, A. (2012). Real-time automated modeling and control of self-assembling systems. In 2012 IEEE international conference on robotics and automation (pp. 4266–4273). https://doi.org/10.1109/ICRA.2012.6224888

  • Motomura, K., Kawakami, A., & Hirose, S. (2005). Development of arm equipped single wheel rover: Effective arm-posture-based steering method. Autonomous Robots, 18, 215–229. https://doi.org/10.1007/s10514-005-0727-9.

    Article  Google Scholar 

  • Murata, S., Kakomura, K., & Kurokawa, H. (2006). Docking experiments of a modular robot by visual feedback. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 625–630). https://doi.org/10.1109/IROS.2006.282545

  • Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441. https://doi.org/10.1109/TMECH.2002.806220.

    Article  Google Scholar 

  • Murray, L., Timmis, J., & Tyrrell, A. (2013). Modular self-assembling and self-reconfiguring e-pucks. Swarm Intelligence, 7(2), 83–113. https://doi.org/10.1007/s11721-013-0082-y.

    Article  Google Scholar 

  • Nilsson, M. (2002). Heavy-duty connectors for self-reconfiguring robots. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No.02CH37292), vol 4 (pp. 4071–4076). https://doi.org/10.1109/ROBOT.2002.1014378

  • O’Hara, I., Paulos, J., Davey, J., Eckenstein, N., Doshi, N., Tosun, T., Greco. J., Seo, J., Turpin, M., Kumar, V., & Yim, M. (2014). Self-assembly of a swarm of autonomous boats into floating structures. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 1234–1240). https://doi.org/10.1109/ICRA.2014.6907011

  • Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In 2012 IEEE international conference on robotics and automation (pp. 3293–3298). https://doi.org/10.1109/ICRA.2012.6224638

  • Rubenstein, M., Payne, K., Will, P., & Wei-Min, S. (2004). Docking among independent and autonomous CONRO self-reconfigurable robots. In IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04. 2004, vol 3 (pp. 2877–2882). https://doi.org/10.1109/ROBOT.2004.1307497

  • Saldaña, D., Gabrich, B., Li, G., Yim, M., & Kumar, V. (2018). ModQuad: The flying modular structure that self-assembles in midair. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 691–698). https://doi.org/10.1109/ICRA.2018.8461014

  • Saldaña, D., Gabrich, B., Whitzer, M., Prorok, A., Campos, M. F. M., Yim, M., & Kumar, V. (2017). A decentralized algorithm for assembling structures with modular robots. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2736–2743). https://doi.org/10.1109/IROS.2017.8206101

  • Saldaña, D., Gupta, P. M., & Kumar, V. (2019). Design and control of aerial modules for inflight self-disassembly. IEEE Robotics and Automation Letters, 4(4), 3410–3417. https://doi.org/10.1109/LRA.2019.2926680.

    Article  Google Scholar 

  • Salemi, B, Moll, M., & Shen, W. (2006). SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 3636–3641). https://doi.org/10.1109/IROS.2006.281719

  • Seo, J., Paik, J., & Yim, M. (2019). Modular reconfigurable robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 63–88. https://doi.org/10.1146/annurev-control-053018-023834.

    Article  Google Scholar 

  • Seo, J., Yim, M., & Kumar, V. (2016). Assembly sequence planning for constructing planar structures with rectangular modules. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 5477–5482). https://doi.org/10.1109/ICRA.2016.7487761

  • Shen, W., Kovac, R., & Rubenstein, M. (2009). SINGO: A single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. In 2009 IEEE international conference on robotics and automation (pp. 4253–4258). https://doi.org/10.1109/ROBOT.2009.5152408

  • Stoy, K. (2006). How to construct dense objects with self-recondfigurable robots. In Christensen, H. I. (Ed.), European robotics symposium 2006 (pp. 27–37). Heidelberg: Springer.

  • Tolley, M. T., & Lipson, H. (2011). On-line assembly planning for stochastically reconfigurable systems. The International Journal of Robotics Research, 30(13), 1566–1584. https://doi.org/10.1177/0278364911398160.

    Article  Google Scholar 

  • Tosun, T., Davey, J., Liu, C., & Yim, M. (2016). Design and characterization of the EP-Face connector. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 45–51). https://doi.org/10.1109/IROS.2016.7759033

  • Tosun, T., Jing, G., Kress-Gazit, H., & Yim, M. (2018). Computer-aided compositional design and verification for modular robots. Springer: Cham (pp. 237–252). https://doi.org/10.1007/978-3-319-51532-8_15.

  • Turpin, M., Michael, N., & Kumar, V. (2013). Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In 2013 IEEE international conference on robotics and automation (pp. 842–848). https://doi.org/10.1109/ICRA.2013.6630671

  • Wei, H., Chen, Y., Tan, J., & Wang, T. (2011). Sambot: A self-assembly modular robot system. IEEE/ASME Transactions on Mechatronics, 16(4), 745–757. https://doi.org/10.1109/TMECH.2010.2085009.

    Article  Google Scholar 

  • Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 27(3–4), 463–479. https://doi.org/10.1177/0278364907084984.

  • Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758. https://doi.org/10.1126/science.1245842.

    Article  Google Scholar 

  • White, P, Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfiguration of modular robots. In Proceedings of robotics: Science and systems, Cambridge, USA. https://doi.org/10.15607/RSS.2005.I.022.

  • Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: A modular reconfigurable robot. In Proceedings 2000 ICRA. millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No.00CH37065), vol 1 (pp. 514–520). https://doi.org/10.1109/ROBOT.2000.844106

  • Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007a). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics Automation Magazine, 14(1), 43–52. https://doi.org/10.1109/MRA.2007.339623.

    Article  Google Scholar 

  • Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. J. (2007b). Towards robotic self-reassembly after explosion. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 2767–2772). https://doi.org/10.1109/IROS.2007.4399594

  • Yim, M., White, P., Park, M., & Sastra, J. (2009). Modular self-reconfigurable robots. In: Meyers, R. A. (ed.), Encyclopedia of complexity and systems science. Springer: New York (pp. 5618–5631). https://doi.org/10.1007/978-0-387-30440-3_334

  • Yim, M., Zhang, Y., Roufas, K., Duff, D., & Eldershaw, C. (2002). Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Transactions on Mechatronics, 7(4), 442–451. https://doi.org/10.1109/TMECH.2002.806221.

    Article  Google Scholar 

  • Yim, M. H., Goldberg, D., & Casal, A. (2000). Connectivity planning for closed-chain reconfiguration. In: McKee, G. T., Schenker, P. S. (eds.), Sensor fusion and decentralized control in robotic systems III, International Society for Optics and Photonics, SPIE, vol 4196 (pp. 402–412). https://doi.org/10.1117/12.403738

Download references

Funding

This work was funded by NSF Grant Number CNS-1329620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by NSF Grant Number CNS-1329620.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 21388 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Lin, Q., Kim, H. et al. SMORES-EP, a modular robot with parallel self-assembly. Auton Robot 47, 211–228 (2023). https://doi.org/10.1007/s10514-022-10078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-022-10078-1

Keywords

Navigation