Abstract
Self-assembly of modular robotic systems enables the construction of complex robotic configurations to adapt to different tasks. This paper presents a framework for SMORES types of modular robots to efficiently self-assemble into tree topologies. These modular robots form kinematic chains that have been shown to be capable of a large variety of manipulation and locomotion tasks, yet they can reconfigure using a mobile reconfiguration. A desired kinematic topology can be mapped onto a planar pattern with the optimal module assignment based on the modules’ locations, then the mobile reconfiguration assembly process can be executed in parallel. A docking controller is developed to guarantee the success of docking processes. A hybrid control architecture is designed to handle a large number of modules and complex behaviors of each individual, and achieve efficient and robust self-assembly actions. The framework is demonstrated in both hardware and simulation on the SMORES-EP platform.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bererton, C., & Khosla, P. K. (2001). Towards a team of robots with repair capabilities: A visual docking system. In D. Rus & S. Singh (Eds.), Experimental Robotics VII (pp. 333–342). Heidelberg: Springer.
Binder, B., Beck, F., König, F., & Bader, M. (2019). Multi robot route planning (MRRP): Extended spatial-temporal prioritized planning. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4133–4139). https://doi.org/10.1109/IROS40897.2019.8968465
Brandt, D. (2006). Comparison of A* and RRT-Connect motion planning techniques for self-reconfiguration planning. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 892–897). https://doi.org/10.1109/IROS.2006.281743.
Brown, H. B., Vande Weghe, J. M., Bererton, C. A., & Khosla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461. https://doi.org/10.1109/TMECH.2002.806226.
Chirikjian, G. S. (1994). Kinematics of a metamorphic robotic system. In Proceedings of the 1994 IEEE international conference on robotics and automation (pp. 449–455) vol. 1. https://doi.org/10.1109/ROBOT.1994.351256
Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., & Campbell, M. (2018). An integrated system for perception-driven autonomy with modular robots. Science Robotics. https://doi.org/10.1126/scirobotics.aat4983.
Davey, J., Kwok, N., & Yim, M. (2012). Emulating self-reconfigurable robots-design of the SMORES system. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 4464–4469). https://doi.org/10.1109/IROS.2012.6385845
Dutta, A., Dasgupta, P., & Nelson, C. (2019). Distributed configuration formation with modular robots using (sub)graph isomorphism-based approach. Autonomous Robots, 43(4), 837–857. https://doi.org/10.1007/s10514-018-9759-9.
Eckenstein, N., & Yim, M. (2012). The X-Face: An improved planar passive mechanical connector for modular self-reconfigurable robots. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 3073–3078). https://doi.org/10.1109/IROS.2012.6386150
Eckenstein, N., & Yim, M. (2017). Modular robot connector area of acceptance from configuration space obstacles. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3550–3555). https://doi.org/10.1109/IROS.2017.8206199
Fox, M. J., & Shamma, J. S. (2015). Probabilistic performance guarantees for distributed self-assembly. IEEE Transactions on Automatic Control, 60(12), 3180–3194. https://doi.org/10.1109/TAC.2015.2418673.
Fukuda, T., Buss, M., Hosokai, H., & Kawauchi, Y. (1991). Cell structured robotic system CEBOT: Control, planning and communication methods. Robotics and Autonomous Systems,7(2), 239–248.
Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in a Swarm-bot. In Murase, K., Sekiyama, K., Naniwa, T., Kubota, N., & Sitte, J. (eds.), Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005) (pp. 314–322). Springer: Berlin.
Haghighat, B., Droz, E., & Martinoli, A. (2015). Lily: A miniature floating robotic platform for programmable stochastic self-assembly. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 1941–1948). https://doi.org/10.1109/ICRA.2015.7139452
Haghighat, B., & Martinoli, A. (2017). Automatic synthesis of rulesets for programmable stochastic self-assembly of rotationally symmetric robotic modules. Swarm Intelligence, 11, 243–270. https://doi.org/10.1007/s11721-017-0139-4.
Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics and Autonomous Systems, 17(1), 107–118. https://doi.org/10.1016/0921-8890(95)00066-6.
Kamimura, A., Kurokawa, H., Toshida, E., Tomita, K., Murata, S., & Kokaji, S. (2003). Automatic locomotion pattern generation for modular robots. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), vol 1 (pp. 714–720). https://doi.org/10.1109/ROBOT.2003.1241678.
Klavins, E. (2002). Automatic synthesis of controllers for distributed assembly and formation forming. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No.02CH37292), vol 3 (pp. 3296–3302). https://doi.org/10.1109/ROBOT.2002.1013735
Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962. https://doi.org/10.1109/TAC.2006.876950.
Knaian, A. N. (2010). Electropermanent magnetic connectors and actuators: Devices and their application in programmable matter. Ph.D. thesis, Massachusetts Institute of Technology, Boston.
Li, H., Wang, T., & Chirikjian, G. S. (2016). Self-assembly planning of a shape by regular modular robots. In X. Ding, X. Kong, & J. S. Dai (Eds.), Advances in Reconfigurable Mechanisms and Robots II (pp. 867–877). Cham: Springer International Publishing.
Liu, C., Tosun, T., & Yim, M. (2021). A low-cost, highly customizable solution for position estimation in modular robots. Journal of Mechanisms and Robotics.,https://doi.org/10.1115/1.4050249.
Liu, C., Whitzer, M., & Yim, M. (2019). A distributed reconfiguration planning algorithm for modular robots. IEEE Robotics and Automation Letters, 4(4), 4231–4238. https://doi.org/10.1109/LRA.2019.2930432.
Liu, W., & Winfield, A. F. T. (2014). Self-assembly in heterogeneous modular robots. In M. Ani Hsieh & G. Chirikjian (Eds.), Distributed autonomous robotic systems (pp. 219–232). Heidelberg: Springer.
Liu, C., & Yim, M. (2017). Configuration recognition with distributed information for modular robots. In IFRR international symposium on robotics research (ISRR), Puerto Varas, Chile. https://doi.org/10.1007/978-3-030-28619-4_65
Liu, C., & Yim, M. (2020). A quadratic programming approach to modular robot control and motion planning. In 2020 Forth IEEE international conference on robotic computing (IRC), Taichung, Taiwan.
McColm, G. L. (2004). On the structure of random unlabelled acyclic graphs. Discrete Mathematics, 277(1), 147–170.
Mermoud, G., Mastrangeli, M., Upadhyay, U., & Martinoli, A. (2012). Real-time automated modeling and control of self-assembling systems. In 2012 IEEE international conference on robotics and automation (pp. 4266–4273). https://doi.org/10.1109/ICRA.2012.6224888
Motomura, K., Kawakami, A., & Hirose, S. (2005). Development of arm equipped single wheel rover: Effective arm-posture-based steering method. Autonomous Robots, 18, 215–229. https://doi.org/10.1007/s10514-005-0727-9.
Murata, S., Kakomura, K., & Kurokawa, H. (2006). Docking experiments of a modular robot by visual feedback. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 625–630). https://doi.org/10.1109/IROS.2006.282545
Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441. https://doi.org/10.1109/TMECH.2002.806220.
Murray, L., Timmis, J., & Tyrrell, A. (2013). Modular self-assembling and self-reconfiguring e-pucks. Swarm Intelligence, 7(2), 83–113. https://doi.org/10.1007/s11721-013-0082-y.
Nilsson, M. (2002). Heavy-duty connectors for self-reconfiguring robots. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No.02CH37292), vol 4 (pp. 4071–4076). https://doi.org/10.1109/ROBOT.2002.1014378
O’Hara, I., Paulos, J., Davey, J., Eckenstein, N., Doshi, N., Tosun, T., Greco. J., Seo, J., Turpin, M., Kumar, V., & Yim, M. (2014). Self-assembly of a swarm of autonomous boats into floating structures. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 1234–1240). https://doi.org/10.1109/ICRA.2014.6907011
Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In 2012 IEEE international conference on robotics and automation (pp. 3293–3298). https://doi.org/10.1109/ICRA.2012.6224638
Rubenstein, M., Payne, K., Will, P., & Wei-Min, S. (2004). Docking among independent and autonomous CONRO self-reconfigurable robots. In IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04. 2004, vol 3 (pp. 2877–2882). https://doi.org/10.1109/ROBOT.2004.1307497
Saldaña, D., Gabrich, B., Li, G., Yim, M., & Kumar, V. (2018). ModQuad: The flying modular structure that self-assembles in midair. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 691–698). https://doi.org/10.1109/ICRA.2018.8461014
Saldaña, D., Gabrich, B., Whitzer, M., Prorok, A., Campos, M. F. M., Yim, M., & Kumar, V. (2017). A decentralized algorithm for assembling structures with modular robots. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2736–2743). https://doi.org/10.1109/IROS.2017.8206101
Saldaña, D., Gupta, P. M., & Kumar, V. (2019). Design and control of aerial modules for inflight self-disassembly. IEEE Robotics and Automation Letters, 4(4), 3410–3417. https://doi.org/10.1109/LRA.2019.2926680.
Salemi, B, Moll, M., & Shen, W. (2006). SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 3636–3641). https://doi.org/10.1109/IROS.2006.281719
Seo, J., Paik, J., & Yim, M. (2019). Modular reconfigurable robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 63–88. https://doi.org/10.1146/annurev-control-053018-023834.
Seo, J., Yim, M., & Kumar, V. (2016). Assembly sequence planning for constructing planar structures with rectangular modules. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 5477–5482). https://doi.org/10.1109/ICRA.2016.7487761
Shen, W., Kovac, R., & Rubenstein, M. (2009). SINGO: A single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. In 2009 IEEE international conference on robotics and automation (pp. 4253–4258). https://doi.org/10.1109/ROBOT.2009.5152408
Stoy, K. (2006). How to construct dense objects with self-recondfigurable robots. In Christensen, H. I. (Ed.), European robotics symposium 2006 (pp. 27–37). Heidelberg: Springer.
Tolley, M. T., & Lipson, H. (2011). On-line assembly planning for stochastically reconfigurable systems. The International Journal of Robotics Research, 30(13), 1566–1584. https://doi.org/10.1177/0278364911398160.
Tosun, T., Davey, J., Liu, C., & Yim, M. (2016). Design and characterization of the EP-Face connector. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 45–51). https://doi.org/10.1109/IROS.2016.7759033
Tosun, T., Jing, G., Kress-Gazit, H., & Yim, M. (2018). Computer-aided compositional design and verification for modular robots. Springer: Cham (pp. 237–252). https://doi.org/10.1007/978-3-319-51532-8_15.
Turpin, M., Michael, N., & Kumar, V. (2013). Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In 2013 IEEE international conference on robotics and automation (pp. 842–848). https://doi.org/10.1109/ICRA.2013.6630671
Wei, H., Chen, Y., Tan, J., & Wang, T. (2011). Sambot: A self-assembly modular robot system. IEEE/ASME Transactions on Mechatronics, 16(4), 745–757. https://doi.org/10.1109/TMECH.2010.2085009.
Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 27(3–4), 463–479. https://doi.org/10.1177/0278364907084984.
Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758. https://doi.org/10.1126/science.1245842.
White, P, Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfiguration of modular robots. In Proceedings of robotics: Science and systems, Cambridge, USA. https://doi.org/10.15607/RSS.2005.I.022.
Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: A modular reconfigurable robot. In Proceedings 2000 ICRA. millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No.00CH37065), vol 1 (pp. 514–520). https://doi.org/10.1109/ROBOT.2000.844106
Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007a). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics Automation Magazine, 14(1), 43–52. https://doi.org/10.1109/MRA.2007.339623.
Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. J. (2007b). Towards robotic self-reassembly after explosion. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 2767–2772). https://doi.org/10.1109/IROS.2007.4399594
Yim, M., White, P., Park, M., & Sastra, J. (2009). Modular self-reconfigurable robots. In: Meyers, R. A. (ed.), Encyclopedia of complexity and systems science. Springer: New York (pp. 5618–5631). https://doi.org/10.1007/978-0-387-30440-3_334
Yim, M., Zhang, Y., Roufas, K., Duff, D., & Eldershaw, C. (2002). Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Transactions on Mechatronics, 7(4), 442–451. https://doi.org/10.1109/TMECH.2002.806221.
Yim, M. H., Goldberg, D., & Casal, A. (2000). Connectivity planning for closed-chain reconfiguration. In: McKee, G. T., Schenker, P. S. (eds.), Sensor fusion and decentralized control in robotic systems III, International Society for Optics and Photonics, SPIE, vol 4196 (pp. 402–412). https://doi.org/10.1117/12.403738
Funding
This work was funded by NSF Grant Number CNS-1329620.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was funded by NSF Grant Number CNS-1329620.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary file 1 (mp4 21388 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, C., Lin, Q., Kim, H. et al. SMORES-EP, a modular robot with parallel self-assembly. Auton Robot 47, 211–228 (2023). https://doi.org/10.1007/s10514-022-10078-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-022-10078-1