iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10514-016-9594-9
Cooperative navigation of AUVs via acoustic communication networking: field experience with the Typhoon vehicles | Autonomous Robots Skip to main content

Advertisement

Log in

Cooperative navigation of AUVs via acoustic communication networking: field experience with the Typhoon vehicles

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A cooperative navigation procedure for a team of autonomous underwater vehicles (AUVs) is described and validated on experimental data. The procedure relies on acoustic communication networking among the AUVs and/or fixed acoustic nodes, and it is suitable as a low-cost solution for team navigation. Embedding the acoustic localization measurements in the communication scheme causes delays and sometimes loss of acoustic data, depending on acoustic propagation conditions. Despite this drawback, the results obtained show that on-board localization estimates have an error of the order of few meters, improving the overall navigation performance and leading the system towards long-term autonomy in terms of operating mission time, without the need of periodic resurfacings dedicated to reset the estimation error. The data were collected during the CommsNet ’13 experiment, led by the NATO Science and Technology Organization Center for Maritime Research and Experimentation (CMRE), and the Breaking The Surface ’14 workshop, organized by the University of Zagreb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allotta, B., Costanzi, R., Meli, E., Pugi, L., Ridolfi, A., & Vettori, G. (2014). Cooperative localization of a team of AUVs by a tetrahedral configuration. Robotics and Autonomous Systems, 62(8), 1228–1237. doi:10.1016/j.robot.2014.03.004.

    Article  Google Scholar 

  • Allotta, B., Bartolini, F., Caiti, A., Costanzi, R., Corato, F. D., Fenucci, D., et al. (2015). Typhoon at CommsNet13: Experimental experience on AUV navigation and localization. Annual Reviews in Control, 40, 157–171. doi:10.1016/j.arcontrol.2015.09.010.

    Article  Google Scholar 

  • Allotta, B., Pugi, L., Bartolini, F., Ridolfi, A., Costanzi, R., Monni, N., et al. (2015b). Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 229(3), 248–272. doi:10.1177/1475090213514040.

    Google Scholar 

  • Allotta, B., Caiti, A., Costanzi, R., Fanelli, F., Fenucci, D., Meli, E., et al. (2016). A new AUV navigation system exploiting unscented Kalman filter. Ocean Engineering, 113, 121–132. doi:10.1016/j.oceaneng.2015.12.058.

    Article  Google Scholar 

  • Bahr, A., Leonard, J. J., & Fallon, M. F. (2009). Cooperative localization for autonomous underwater vehicles. The International Journal of Robotics Research, 28(6), 714–728. doi:10.1177/0278364908100561.

    Article  Google Scholar 

  • Bayat, M., Crasta, N., Aguiar, A., Pascoal, A. (2015). Range-based underwater vehicle localization in the presence of unknown ocean currents: Theory and experiments. IEEE Transactions on Control Systems Technology PP(99), 1–1. doi:10.1109/TCST.2015.2420636.

  • Becker, C., Ribas, D., Ridao, P. (2012) Simultaneous sonar beacon localization & AUV navigation. In: IFAC conference on manoeuvring and control of marine craft. Arenzano. doi:10.3182/20120919-3-IT-2046.00034.

  • Bellingham, J., Zhang, Y., Kerwin, J., Erikson, J., Hobson, B., Kieft, B., Godin, M., McEwen, R., Hoover, T., Paul, J., Hamilton, A., Franklin, J., Banka, A. (2010). Efficient propulsion for the Tethys long-range autonomous underwater vehicle. In: 2010 IEEE/OES on autonomous underwater vehicles (AUV), pp. 1–7, doi:10.1109/AUV.2010.5779645.

  • Caiti, A., Calabro, V., Fabbri, T., Fenucci, D., Munafo, A. (2013). Underwater communication and distributed localization of AUV teams. In: 2013 MTS/IEEE on OCEANS—Bergen, pp. 1–8. doi:10.1109/OCEANS-Bergen.2013.6608166.

  • Caiti, A., Di Corato, F., Fenucci, D., Grechi, S., Novi, M., Pacini, F., Paoli, G. (2014). The project V-fides: A new generation AUV for deep underwater exploration, operation and monitoring. In: 2014 oceans—St. John’s, pp. 1–7. doi:10.1109/OCEANS.2014.7003091.

  • Fallon, M., Papadopoulos, G., Leonard, J. (2010). A measurement distribution framework for cooperative navigation using multiple auvs. In: 2010 IEEE international conference on robotics and automation (ICRA), pp. 4256–4263. doi:10.1109/ROBOT.2010.5509869.

  • Fossen, T. I. (2002). Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles (1st ed.). Trondheim: Marine Cybernetics.

    Google Scholar 

  • Furfaro, T., & Alves, J. (2014). An application of distributed long baseline node ranging in an underwater network. Underwater Communications and Networking (UComms), 2014, 1–5. doi:10.1109/UComms.2014.7017126.

    Article  Google Scholar 

  • Gebre-Egziabher, D., Hayward, R., & Powell, J. (1998). A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications. IEEE Position Location and Navigation Symposium, 1998, 518–525. doi:10.1109/PLANS.1998.670207.

    Google Scholar 

  • Hagerman, G. (2002). Wave energy systems for recharging auv energy supplies. In: Proceedings of the 2002 workshop on autonomous underwater vehicles, pp. 75–84. doi:10.1109/AUV.2002.1177207.

  • Lloret, J. (2013). Underwater sensor nodes and networks. Sensors, 13(9), 11782. doi:10.3390/s130911782.

    Article  Google Scholar 

  • Milne, P. H. (1983). Underwater acoustic positioning systems (1st ed.). London: E. & F. N. Spon Ltd.

    Google Scholar 

  • Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, 39(1), 131–149. doi:10.1109/JOE.2013.2278891.

    Article  Google Scholar 

  • Petillot, Y., Maurelli, F., Valeyrie, N., Mallios, A., Ridao, P., Aulinas, J., et al. (2010). Acoustic-based techniques for autonomous underwater vehicle localization. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 224(4), 293–307. doi:10.1243/14750902JEME197.

    Google Scholar 

  • Rogers, R. M. (2000). Applied mathematics in integrated navigation systems (3rd ed.). Reston, VA: American Institute of Aeronautics & Astronautics.

    Google Scholar 

  • Stutters, L., Liu, H., Tiltman, C., & Brown, D. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(4), 581–589. doi:10.1109/TSMCC.2008.919147.

    Article  Google Scholar 

  • Walls, J. M., & Eustice, R. M. (2014). An origin state method for communication constrained cooperative localization with robustness to packet loss. The International Journal of Robotics Research, 33(9), 1191–1208. doi:10.1177/0278364914532390.

    Article  Google Scholar 

  • Webster, S., Walls, J., Whitcomb, L., & Eustice, R. (2013). Decentralized extended information filter for single-beacon cooperative acoustic navigation: Theory and experiments. IEEE Transactions on Robotics, 29(4), 957–974. doi:10.1109/TRO.2013.2252857.

    Article  Google Scholar 

  • Whitcomb, L., Jakuba, M., Kinsey, J., Martin, S., Webster, S., Howland, J., Taylor, C., Gomez-Ibanez, D., Yoerger, D. (2010). Navigation and control of the Nereus hybrid underwater vehicle for global ocean science to 10,903 m depth: Preliminary results. In: 2010 IEEE international conference on robotics and automation (ICRA), pp. 594–600. doi:10.1109/ROBOT.2010.5509265.

Download references

Acknowledgments

This work has been partially supported by the European project ARROWS, that has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement no 308724, and by the project THESAURUS (PAR FAS Regione Toscana, Linea di Azione 1.1.a.3). The help of the NATO Science and Technology Organization Center for Maritime Research and Experimentation (CMRE) for the CommsNet ’13 experiment, and of the University of Zagreb for the Breaking The Surface ’14 experiment are gratefully acknowledged. Finally, the authors wish to thank the Office of Naval Research Global—ONRG of the U.S. Navy for having funded the two weeks of sea trials in Israel (from June 17th to July 1st 2014 in Akko and Caesarea) and the Marine Archaeology Unit, Israel Antiquities Authority IAA for its supervision in this context.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ridolfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allotta, B., Caiti, A., Costanzi, R. et al. Cooperative navigation of AUVs via acoustic communication networking: field experience with the Typhoon vehicles. Auton Robot 40, 1229–1244 (2016). https://doi.org/10.1007/s10514-016-9594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9594-9

Keywords

Navigation