iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10485-010-9225-0
Two-Vector Spaces and Groupoids | Applied Categorical Structures Skip to main content
Log in

Two-Vector Spaces and Groupoids

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

This paper describes a relationship between essentially finite groupoids and two-vector spaces. In particular, we show to construct two-vector spaces of Vect-valued presheaves on such groupoids. We define two-linear maps corresponding to functors between groupoids in both a covariant and contravariant way, which are ambidextrous adjoints. This is used to construct a representation—a weak functor—from Span(FinGpd) (the bicategory of essentially finite groupoids and spans of groupoids) into 2Vect. In this paper we prove this and give the construction in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, J.: Higher-dimensional algebra II: 2-Hilbert spaces. Adv. Math. 127, 125–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baez, J.: Higher-dimensional algebra VII: groupoidification. http://math.ucr.edu/home/baez/hda7.pdf (2009)

  3. Baez, J., Crans, A.: Higher-dimensional algebra VI: lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Baez, J., Dolan, J.: From finite sets to Feynman diagrams. In: Engquist B., Schmid W. (eds.) Mathematics Unlimited—2001 And Beyond. Springer, New York (2001). Preprint at http://arXiv.org/abs/math/0004133

    Google Scholar 

  5. Benson, D.: Representations and cohomology I: basic representation theory of finite groups and associative algebras. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge

  6. Dawson, R.J.M., Paré, R., Pronk, D.A.: Universal properties of span. Theory Appl. Categ. 13(4), 61–85 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Elgueta, J.: Generalized 2-vector spaces and general linear 2-groups. J. Pure Appl. Algebra 212, 2067–2091 (2008)

    Article  MathSciNet  Google Scholar 

  8. Freyd, P.: Abelian categories: an introduction to the theory of functors. Harper & Row, San Francisco (1964)

    MATH  Google Scholar 

  9. Kapranov, M., Voevodsky, V.: 2-categories and Zamolodchikov tetrahedron equations. Proc. Symp. Pure Math 56 Part 2, 177–260 (1994)

    MathSciNet  Google Scholar 

  10. Lauda, A.D.: Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ. 16(4), 84–122 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Lawvere, W.F.: Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Ph.D. thesis, Columbia University (1963). (Reprinted in Theory and Applications of Categories 2004)

  12. MacLane, S.: Categories for the working mathematician. No. 5 in graduate texts in mathematics. Springer, New York (1971)

    Google Scholar 

  13. MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Universitext. Springer, New York (1992)

    Google Scholar 

  14. Morton, J.C. Extended TQFT’s and Quantum Gravity. Ph.D. thesis, University of California, Riverside (2007). http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.0032V1.pdf

  15. Panchadcharam, E.: Categories of Mackey functors. Ph.D. thesis, Macquarie University (2006)

  16. Sternberg, S.: Group theory and physics. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  17. Street, R.: Enriched categories and cohomology. Quaest. Math. 6, 265–283 (1983). (Reprints in Theory and Applications of Categories)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Colin Morton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, J.C. Two-Vector Spaces and Groupoids. Appl Categor Struct 19, 659–707 (2011). https://doi.org/10.1007/s10485-010-9225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-010-9225-0

Keywords

Mathematics Subject Classifications (2000)

Navigation