Abstract
In ZF set theory finiteness classes are introduced and their stability under basic set theoretical constructions are being investigated. Typical results are:
-
1.
The class of finite sets is the smallest finiteness class.
-
2.
The class of Dedekind-finite sets is the largest finiteness class.
-
3.
The class of almost finite sets is the largest summable finiteness class.
-
4.
Equivalent are:
-
a.
There is only one finiteness class.
-
b.
The union of each family of 1-element sets, indexed by a Dedekind-finite set, is Dedekind-finite.
-
c.
The axiom of choice, for countable families of Dedekind-finite sets.
-
d.
The shrinking principle for families (X i )i ∈ I of sets, indexed by a Dedekind-finite set I (i.e., there exists a family (Y i )i ∈ I of pairwise disjoint subsets Y i of X i with \(\underset{i\in I}{\bigcup} Y_i = \underset{i\in I}{\bigcup} X_i\)).
-
a.
-
5.
In suitable ZF-models there exist families \(({\mathfrak{A}}_r)_{r\in{\mathbb{R}}}\) of finiteness classes such that
$$r < s \Longrightarrow {\mathfrak{A}}_r \subsetneqq {\mathfrak{A}}_s.$$
Similar content being viewed by others
References
Banaschewski, B., Schuster, P.: The shrinking principle and the axiom of choice. Monatsh. Math. 151, 263–270 (2007)
Bolzano, B.: Paradoxien des Unendlichen Reclam (1851)
Borges, J.L.: Der ewige Wettlauf zwischen Achilles und der Schildkröte (1929). In: Eine neue Widerlegung der Zeit, pp. 35–42. Eichborn Verlag, Frankfurt am Main (2003)
Brunner, N.: Sequential compactness and the axiom of choice. Notre Dame J. Form. Log. 24, 89–92 (1983)
Dedekind, R.: Was sind und was sollen die Zahlen? (1887)
Feferman, S.: Set-theoretical foundations of category theory. Springer Lecture Notes Math., vol. 106, pp. 201–247. Springer, New York (1969)
Galilei, G.: Discorsi e Dimostrazioni Matematiche Intorno a due Nuove Scienze Attenenti Alla Mecanica & i Movimenti Locali (1638). English translation: Dialogues Concerning Two New Sciences. Dover, New York (1914)
Herrlich, H.: Axiom of choice. Springer Lecture Notes Math., vol. 1876. Springer, New York (2006)
Herrlich, H., Strecker, G.E.: Category Theory (1973), 3rd edn. Heldermann Verlag, Lemgo (2007)
Herrlich, H., Tachtsis, E.: On the number of Russell’s socks or 2 + 2 + 2 + ... = ? Comment. Math. Univ. Carol. 47, 707–717 (2006)
Hilbert, D.: Über das Unendliche. Math. Ann. 95, 161–190 (1926)
Howard, P., Rubin, J.E.: Consequences of the axiom of choice. AMS Math. Surv. Monogr. 59 (1998)
Howard, P., Yorke, M.: Definitions of finite. Fundam. Math. 133, 169–177 (1989)
Jech, T.J.: The Axiom of Choice (1973). North Holland Studies in Logic and the Foundations of Math, vol. 75. Reprint: Dover, New York (2008)
Moore, G.H.: Zermelo’s Axiom of Choice, its Origins, Development and Influence. Springer, New York (1982)
von Neumann, J.: Eine Axiomatisierung der Mengenlehre. J. Reine Angew. Math. 154, 219–240 (1925). English translation in van Heijenoort, J. (ed.). From Frege to Gödel, pp. 393–413. Harvard University Press, Cambridge (1967)
Pascal, B.: Pensees III (1670)
Russell, B.: Philosophical Essays. Longmans, London (1910)
Russell, B.: Mysticism and Logic. Norton, New York (1929)
Sponsel, R.: Das Ganze ist größer als der Teil. http://www.sgipt.org/wisms/mathe/ML/euklid8.htm (2006)
Tarski, A.: Sur les ensembles finis. Fundam. Math. 6, 45–95 (1924)
Weyl, H.: Philosophie der Mathematik und Naturwissenschaft. In: Oldenbourg, R. (ed.) Handbuch der Philosophie (1926). English translation: Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton (1949)
Weyl, H.: Axiomatic versus constructive methods in mathematics. Math. Intell. 7, 10–17, 38 (1985)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Herrlich, H. The Finite and the Infinite. Appl Categor Struct 19, 455–468 (2011). https://doi.org/10.1007/s10485-009-9212-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-009-9212-5
Keywords
- Axiom of choice
- Finiteness class
- Finite
- Dedekind-finite
- Almost finite
- Hereditary
- Cohereditary
- Summable
- Productive
- Power-closed
- Full subcategories of Set