iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10485-009-9212-5
The Finite and the Infinite | Applied Categorical Structures Skip to main content
Log in

The Finite and the Infinite

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In ZF set theory finiteness classes are introduced and their stability under basic set theoretical constructions are being investigated. Typical results are:

  1. 1.

    The class of finite sets is the smallest finiteness class.

  2. 2.

    The class of Dedekind-finite sets is the largest finiteness class.

  3. 3.

    The class of almost finite sets is the largest summable finiteness class.

  4. 4.

    Equivalent are:

    1. a.

      There is only one finiteness class.

    2. b.

      The union of each family of 1-element sets, indexed by a Dedekind-finite set, is Dedekind-finite.

    3. c.

      The axiom of choice, for countable families of Dedekind-finite sets.

    4. d.

      The shrinking principle for families (X i )i ∈ I of sets, indexed by a Dedekind-finite set I (i.e., there exists a family (Y i )i ∈ I of pairwise disjoint subsets Y i of X i with \(\underset{i\in I}{\bigcup} Y_i = \underset{i\in I}{\bigcup} X_i\)).

  5. 5.

    In suitable ZF-models there exist families \(({\mathfrak{A}}_r)_{r\in{\mathbb{R}}}\) of finiteness classes such that

    $$r < s \Longrightarrow {\mathfrak{A}}_r \subsetneqq {\mathfrak{A}}_s.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B., Schuster, P.: The shrinking principle and the axiom of choice. Monatsh. Math. 151, 263–270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolzano, B.: Paradoxien des Unendlichen Reclam (1851)

  3. Borges, J.L.: Der ewige Wettlauf zwischen Achilles und der Schildkröte (1929). In: Eine neue Widerlegung der Zeit, pp. 35–42. Eichborn Verlag, Frankfurt am Main (2003)

  4. Brunner, N.: Sequential compactness and the axiom of choice. Notre Dame J. Form. Log. 24, 89–92 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dedekind, R.: Was sind und was sollen die Zahlen? (1887)

  6. Feferman, S.: Set-theoretical foundations of category theory. Springer Lecture Notes Math., vol. 106, pp. 201–247. Springer, New York (1969)

    Google Scholar 

  7. Galilei, G.: Discorsi e Dimostrazioni Matematiche Intorno a due Nuove Scienze Attenenti Alla Mecanica & i Movimenti Locali (1638). English translation: Dialogues Concerning Two New Sciences. Dover, New York (1914)

  8. Herrlich, H.: Axiom of choice. Springer Lecture Notes Math., vol. 1876. Springer, New York (2006)

    MATH  Google Scholar 

  9. Herrlich, H., Strecker, G.E.: Category Theory (1973), 3rd edn. Heldermann Verlag, Lemgo (2007)

    MATH  Google Scholar 

  10. Herrlich, H., Tachtsis, E.: On the number of Russell’s socks or 2 + 2 + 2 + ... = ? Comment. Math. Univ. Carol. 47, 707–717 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Hilbert, D.: Über das Unendliche. Math. Ann. 95, 161–190 (1926)

    Article  MathSciNet  Google Scholar 

  12. Howard, P., Rubin, J.E.: Consequences of the axiom of choice. AMS Math. Surv. Monogr. 59 (1998)

  13. Howard, P., Yorke, M.: Definitions of finite. Fundam. Math. 133, 169–177 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Jech, T.J.: The Axiom of Choice (1973). North Holland Studies in Logic and the Foundations of Math, vol. 75. Reprint: Dover, New York (2008)

  15. Moore, G.H.: Zermelo’s Axiom of Choice, its Origins, Development and Influence. Springer, New York (1982)

    MATH  Google Scholar 

  16. von Neumann, J.: Eine Axiomatisierung der Mengenlehre. J. Reine Angew. Math. 154, 219–240 (1925). English translation in van Heijenoort, J. (ed.). From Frege to Gödel, pp. 393–413. Harvard University Press, Cambridge (1967)

  17. Pascal, B.: Pensees III (1670)

  18. Russell, B.: Philosophical Essays. Longmans, London (1910)

    MATH  Google Scholar 

  19. Russell, B.: Mysticism and Logic. Norton, New York (1929)

    Google Scholar 

  20. Sponsel, R.: Das Ganze ist größer als der Teil. http://www.sgipt.org/wisms/mathe/ML/euklid8.htm (2006)

  21. Tarski, A.: Sur les ensembles finis. Fundam. Math. 6, 45–95 (1924)

    Google Scholar 

  22. Weyl, H.: Philosophie der Mathematik und Naturwissenschaft. In: Oldenbourg, R. (ed.) Handbuch der Philosophie (1926). English translation: Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton (1949)

  23. Weyl, H.: Axiomatic versus constructive methods in mathematics. Math. Intell. 7, 10–17, 38 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Herrlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrlich, H. The Finite and the Infinite. Appl Categor Struct 19, 455–468 (2011). https://doi.org/10.1007/s10485-009-9212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-009-9212-5

Keywords

Mathematics Subject Classifications (2000)

Navigation