iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10485-009-9205-4
Compactification with Respect to a Generalized-net Convergence on Constructs | Applied Categorical Structures Skip to main content
Log in

Compactification with Respect to a Generalized-net Convergence on Constructs

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce and deal with a convergence on (objects of) constructs which is expressed in terms of generalized nets. The generalized nets used are obtained from the usual nets by replacing the construct of directed sets and cofinal maps by an arbitrary construct. Convergence separation and convergence compactness are then introduced in a natural way. We study the convergence compactness and compactification and show that they behave in much the same way as the compactness and compactification of topological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Castellini, G., Giuli, E.: Closure operators with respect to a functor. Appl. Cat. Struct. 9, 525–537 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clementino, M.M., Giuli, E., Tholen, W.: Topology in a category: compactness. Port. Math. 53, 397–433 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Clementino, M.M., Tholen, W.: Tychonoff’s Theorem in a category. Proc. Am. Math. Soc. 124, 3311–3314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dikranjan, D., Giuli, E.: Closure operators I. Topol. Appl. 27, 129–143 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dikranjan, D., Giuli, E.: Compactness, minimality and closedness with respect to a closure operator. In: Proceedings Int. Conf. on Categorical Topology, Prague 1988, pp. 279–335. World Scientific, Singapore (1989)

    Google Scholar 

  7. Dikranjan, D., Tholen, W.: Categorical Structure of Closure Operators. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  8. Dudley, R.M.: On sequential convergence. Trans. Am. Math. Soc. 112, 483–507 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edgar, G.A.: A cartesian closed category for topology. Gen. Top. Appl. 6, 65–72 (1976)

    Article  MathSciNet  Google Scholar 

  10. Engelking, R.: General Topology. Heldermann Verlag, Berlin (2003)

    Google Scholar 

  11. Fréchet, M.: Sur la notion de voisinage dans les ensembles abstraits. Bull. Sci. Math. 42, 138–156 (1918)

    Google Scholar 

  12. Holgate, D.: Compactification and closure. Quaest. Math. 23, 529–545 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelley, J.L.: General Topology. Van Nostrand, Princeton (1963)

    Google Scholar 

  14. Šlapal, J.: Net spaces in categorical topology. Ann. New York Acad. Sci. 806, 393–412 (1996)

    Article  Google Scholar 

  15. Šlapal, J.: Compactness in categories of S-net spaces. Appl. Cat. Struct. 6, 515–525 (1998)

    Article  MATH  Google Scholar 

  16. Šlapal, J.: Compactification of limit \(\cal S\)-net spaces. Mon.hefte Math. 131, 335–341 (2000)

    Google Scholar 

  17. Šlapal, J.: Convergence structures for categories. Appl. Cat. Struct. 9, 557–570 (2001)

    Article  MATH  Google Scholar 

  18. Šlapal, J.: Compactness with respect to a convergence structure. Quaest. Math. 25, 515–525 (2002)

    Google Scholar 

  19. Spanier, E.: Quasi-topologies. Duke Math. J. 30, 1–14 (1964)

    Article  MathSciNet  Google Scholar 

  20. Urysohn, P.: Sur les classes L de M. Fréchet. Enseign. Math. 25, 77–83 (1926)

    Google Scholar 

  21. Wichterle, K.: On B-convergence spaces. Czech. Math. J. 18, 569–558 (1968)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Šlapal.

Additional information

Partially supported by Ministry of Education of the Czech Republic, research plan no. MSM0021630518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šlapal, J. Compactification with Respect to a Generalized-net Convergence on Constructs. Appl Categor Struct 19, 523–537 (2011). https://doi.org/10.1007/s10485-009-9205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-009-9205-4

Keywords

Mathematics Subject Classifications (2000)

Navigation