Abstract
In this paper, we prove that for a noetherian formal scheme \(\mathfrak X\), its derived category of sheaves of modules with quasi-coherent torsion homologies \(\boldsymbol{\mathsf{D}}_\mathsf{qct}(\mathfrak X)\) is generated by a single compact object. In an Appendix we prove that the category of compact objects in \(\boldsymbol{\mathsf{D}}_\mathsf{qct}(\mathfrak X)\) is skeletally small.
Similar content being viewed by others
References
Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Duality and flat base change on formal schemes. In: Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes. Contemp. Math., vol. 244, pp. 3–90. American Mathematical Society, Providence (1999)
Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Greenlees-May duality of formal schemes. In: Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes. Contemp. Math., vol. 244, pp. 93–112. American Mathematical Society, Providence (1999)
Alonso Tarrío, L., Jeremías López, A., Souto Salorio, M.J.: Localization in categories of complexes and unbounded resolutions. Can. J. Math. 52(2), 225–247 (2000)
Alonso Tarrío, L., Jeremías López, A., Souto Salorio, M.J.: Construction of t −structures and equivalences of derived categories. Trans. Am. Math. Soc. 355, 2523–2543 (2003)
Alonso Tarrío, L., Jeremías López, A., Souto Salorio, M.J.: Bousfield localization on formal schemes. J. Algebra 278(2), 585–610 (2004)
Alonso Tarrío, L., Jeremías López, A., Pérez Rodríguez, M., Vale Gonsalves M.J.: The derived category of quasi-coherent sheaves and axiomatic stable homotopy. Adv. Math. 218, 1224–1252 (2008)
Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86, 209–234 (1993)
Bondal, A., van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36 (2003).
Dwyer, W.G., Greenlees, J.P.C.: Complete modules and torsion modules. Am. J. Math. 124(1), 199–220 (2002)
Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J. 9(2), 119–221 (1957)
Grothendieck, A.: Géométrie formelle et géométrie algébrique. Sémin. Bourbaki 5(182), 28 (1958–1960)
Grothendieck, A., Dieudonné, J.A.: Eléments de Géométrie Algébrique I. Grundlehren der Math. Wiss., vol. 166. Springer, Heidelberg (1971)
Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc. 128(610), 1224–1252 (1997)
Illusie, L.: Généralités sur las conditions de finitude dans les catégories dérivées. In: Théorie des Intersections et Théorème de Riemann-Roch (SGA 6). Lecture Notes in Math., vol. 225, pp. 78–159. Springer, New York (1971)
Lipman, J.: Notes on derived functors and Grothendieck duality. In: Foundations of Grothendieck Duality for Diagrams of Schemes. Lecture Notes in Mathematics, no. 1960, pp. 1–259. Springer-Verlag, New York (2009)
Lipman, J., Neeman, A.: Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor. Ill. J. Math. 51(1), 209–236 (2007)
Lipman, J., Nayak, S., Sastry P.: Variance and duality for Cousin complexes on formal schemes. In: Pseudofunctorial Behavior of Cousin Complexes on Formal Schemes. Contemp. Math., vol. 375, pp. 3–133. American Mathematical Society, Providence (2005)
Neeman, A.: The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. Éc. Norm. Super. (4) 25(5), 547–566 (1992)
Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)
Neeman, A.: Triangulated categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)
Thomason, R.W., Trobaugh, T.: Higher Algebraic K-theory of Schemes and of Derived Categories. The Grothendieck Festschrift, vol. III. Progr. Math., vol. 88, pp. 247–435. Birkhäuser Boston, Boston (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been partially supported by Spain’s MEC and E.U.’s FEDER research projects MTM2005-05754 and MTM2008-03465.
Rights and permissions
About this article
Cite this article
Alonso Tarrío, L., Jeremías López, A., Pérez Rodríguez, M. et al. On the Existence of a Compact Generator on the Derived Category of a Noetherian Formal Scheme. Appl Categor Struct 19, 865–877 (2011). https://doi.org/10.1007/s10485-009-9204-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-009-9204-5
Keywords
- Formal schemes
- Derived categories
- Compactly generated categories
- Perfect complexes
- Skeletally small categories